纳米生物系统中的极值分析:应用和意义。

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1007/s12551-024-01239-w
Kumiko Hayashi, Nobumichi Takamatsu, Shunki Takaramoto
{"title":"纳米生物系统中的极值分析:应用和意义。","authors":"Kumiko Hayashi, Nobumichi Takamatsu, Shunki Takaramoto","doi":"10.1007/s12551-024-01239-w","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme value analysis (EVA) is a statistical method that studies the properties of extreme values of datasets, crucial for fields like engineering, meteorology, finance, insurance, and environmental science. EVA models extreme events using distributions such as Fréchet, Weibull, or Gumbel, aiding in risk prediction and management. This review explores EVA's application to nanoscale biological systems. Traditionally, biological research focuses on average values from repeated experiments. However, EVA offers insights into molecular mechanisms by examining extreme data points. We introduce EVA's concepts with simulations and review its use in studying motor protein movements within cells, highlighting the importance of in vivo analysis due to the complex intracellular environment. We suggest EVA as a tool for extracting motor proteins' physical properties in vivo and discuss its potential in other biological systems. While there have been only a few applications of EVA to biological systems, it holds promise for uncovering hidden properties in extreme data, promoting its broader application in life sciences.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"571-579"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604884/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extreme-value analysis in nano-biological systems: applications and implications.\",\"authors\":\"Kumiko Hayashi, Nobumichi Takamatsu, Shunki Takaramoto\",\"doi\":\"10.1007/s12551-024-01239-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extreme value analysis (EVA) is a statistical method that studies the properties of extreme values of datasets, crucial for fields like engineering, meteorology, finance, insurance, and environmental science. EVA models extreme events using distributions such as Fréchet, Weibull, or Gumbel, aiding in risk prediction and management. This review explores EVA's application to nanoscale biological systems. Traditionally, biological research focuses on average values from repeated experiments. However, EVA offers insights into molecular mechanisms by examining extreme data points. We introduce EVA's concepts with simulations and review its use in studying motor protein movements within cells, highlighting the importance of in vivo analysis due to the complex intracellular environment. We suggest EVA as a tool for extracting motor proteins' physical properties in vivo and discuss its potential in other biological systems. While there have been only a few applications of EVA to biological systems, it holds promise for uncovering hidden properties in extreme data, promoting its broader application in life sciences.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"16 5\",\"pages\":\"571-579\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-024-01239-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01239-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

极值分析(EVA)是一种研究数据集极值特性的统计方法,在工程、气象、金融、保险和环境科学等领域至关重要。EVA使用fracimchet、Weibull或Gumbel等分布对极端事件建模,帮助进行风险预测和管理。本文综述了EVA在纳米尺度生物系统中的应用。传统上,生物学研究侧重于重复实验的平均值。然而,EVA通过检查极端数据点提供了对分子机制的见解。我们通过模拟介绍EVA的概念,并回顾其在研究细胞内运动蛋白运动中的应用,强调由于细胞内环境复杂,体内分析的重要性。我们建议EVA作为提取体内运动蛋白物理特性的工具,并讨论其在其他生物系统中的潜力。虽然EVA在生物系统中的应用很少,但它有望揭示极端数据中的隐藏属性,促进其在生命科学中的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme-value analysis in nano-biological systems: applications and implications.

Extreme value analysis (EVA) is a statistical method that studies the properties of extreme values of datasets, crucial for fields like engineering, meteorology, finance, insurance, and environmental science. EVA models extreme events using distributions such as Fréchet, Weibull, or Gumbel, aiding in risk prediction and management. This review explores EVA's application to nanoscale biological systems. Traditionally, biological research focuses on average values from repeated experiments. However, EVA offers insights into molecular mechanisms by examining extreme data points. We introduce EVA's concepts with simulations and review its use in studying motor protein movements within cells, highlighting the importance of in vivo analysis due to the complex intracellular environment. We suggest EVA as a tool for extracting motor proteins' physical properties in vivo and discuss its potential in other biological systems. While there have been only a few applications of EVA to biological systems, it holds promise for uncovering hidden properties in extreme data, promoting its broader application in life sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信