Diego Sibilia, Martina Amendolea, Roberta Sangiovanni, Mario Bragaglia, Fabrizio Nicoletti, Pierfrancesco Filetici, Antonio D'Addona, Francesca Nanni, Leonardo Dassatti, Giuseppina Nocca
{"title":"丙烯酸基环氧大豆油生物材料的体外降解研究","authors":"Diego Sibilia, Martina Amendolea, Roberta Sangiovanni, Mario Bragaglia, Fabrizio Nicoletti, Pierfrancesco Filetici, Antonio D'Addona, Francesca Nanni, Leonardo Dassatti, Giuseppina Nocca","doi":"10.1155/bmri/7100988","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of regenerative medicine, acrylated epoxidized vegetable oils are emerging as a promising avenue of exploration. The aim of this study is to evaluate the degradability of two formulations of acrylated epoxidized soybean oil (AESO): pure AESO and AESO diluted with soybean oil (SO) for potential bioprintability applications. The comprehensive investigation of these two polymeric formulations included optimization of polymerization conditions, confirmation of cytocompatibility, and, most importantly, the study of their degradability. The results reveal that AESO, used as a biomaterial for biomedical applications, undergoes a distinctive degradation process, combining both enzymatic and oxidative degradation (AESO/SO samples lose 29.45% of their weight after 60 days). This phenomenon is the result of a complex interplay of factors, including the chemical composition and physical characteristics of the polymer, the unique tissue environment in which it is implanted, and the duration of implantation.</p>","PeriodicalId":9007,"journal":{"name":"BioMed Research International","volume":"2024 ","pages":"7100988"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biodegradation Study of Biomaterials Composed of Acrylated Epoxidized Soybean Oil: An In Vitro Study.\",\"authors\":\"Diego Sibilia, Martina Amendolea, Roberta Sangiovanni, Mario Bragaglia, Fabrizio Nicoletti, Pierfrancesco Filetici, Antonio D'Addona, Francesca Nanni, Leonardo Dassatti, Giuseppina Nocca\",\"doi\":\"10.1155/bmri/7100988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of regenerative medicine, acrylated epoxidized vegetable oils are emerging as a promising avenue of exploration. The aim of this study is to evaluate the degradability of two formulations of acrylated epoxidized soybean oil (AESO): pure AESO and AESO diluted with soybean oil (SO) for potential bioprintability applications. The comprehensive investigation of these two polymeric formulations included optimization of polymerization conditions, confirmation of cytocompatibility, and, most importantly, the study of their degradability. The results reveal that AESO, used as a biomaterial for biomedical applications, undergoes a distinctive degradation process, combining both enzymatic and oxidative degradation (AESO/SO samples lose 29.45% of their weight after 60 days). This phenomenon is the result of a complex interplay of factors, including the chemical composition and physical characteristics of the polymer, the unique tissue environment in which it is implanted, and the duration of implantation.</p>\",\"PeriodicalId\":9007,\"journal\":{\"name\":\"BioMed Research International\",\"volume\":\"2024 \",\"pages\":\"7100988\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMed Research International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/bmri/7100988\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMed Research International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/bmri/7100988","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biodegradation Study of Biomaterials Composed of Acrylated Epoxidized Soybean Oil: An In Vitro Study.
In the field of regenerative medicine, acrylated epoxidized vegetable oils are emerging as a promising avenue of exploration. The aim of this study is to evaluate the degradability of two formulations of acrylated epoxidized soybean oil (AESO): pure AESO and AESO diluted with soybean oil (SO) for potential bioprintability applications. The comprehensive investigation of these two polymeric formulations included optimization of polymerization conditions, confirmation of cytocompatibility, and, most importantly, the study of their degradability. The results reveal that AESO, used as a biomaterial for biomedical applications, undergoes a distinctive degradation process, combining both enzymatic and oxidative degradation (AESO/SO samples lose 29.45% of their weight after 60 days). This phenomenon is the result of a complex interplay of factors, including the chemical composition and physical characteristics of the polymer, the unique tissue environment in which it is implanted, and the duration of implantation.
期刊介绍:
BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject areas.