我们从植物泛基因组学到了什么?

IF 21.3 1区 生物学 Q1 PLANT SCIENCES
Murukarthick Jayakodi, Hyeonah Shim, Martin Mascher
{"title":"我们从植物泛基因组学到了什么?","authors":"Murukarthick Jayakodi, Hyeonah Shim, Martin Mascher","doi":"10.1146/annurev-arplant-090823-015358","DOIUrl":null,"url":null,"abstract":"<p><p>A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Are We Learning from Plant Pangenomes?\",\"authors\":\"Murukarthick Jayakodi, Hyeonah Shim, Martin Mascher\",\"doi\":\"10.1146/annurev-arplant-090823-015358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-090823-015358\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-090823-015358","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单一参考基因组并不能完全反映物种多样性。相比之下,泛基因组包含多个基因组,以捕获给定物种的全部非冗余基因,以及其基因组多样性。新的测序技术使研究人员能够产生多个高质量的基因组序列,并以更好的精度编目不同的遗传变异。泛基因组学研究已经发现了植物基因组中的结构变异,剖析了农艺性状的遗传结构,并帮助揭示了植物表型的分子基础和进化起源。泛基因组的概念已经进一步发展成为所谓的超级泛基因组,包括属或分支内的野生亲缘关系,并转移到基于图形的参考系统。然而,构建泛基因组和表示复杂的结构变异在许多作物中仍然具有挑战性。需要标准化的计算管道和通用的数据结构来比较和解释泛基因组。不断增长的植物泛基因组学数据需要新的算法、巨大的数据存储容量和培训,以帮助研究人员和育种者利用新发现的基因和遗传变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Are We Learning from Plant Pangenomes?

A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信