心脏是一个智能泵:Frank-Starling定律的机械转导机制和Anrep效应。

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Ye Chen-Izu, Tamas Banyasz, John A Shaw, Leighton T Izu
{"title":"心脏是一个智能泵:Frank-Starling定律的机械转导机制和Anrep效应。","authors":"Ye Chen-Izu, Tamas Banyasz, John A Shaw, Leighton T Izu","doi":"10.1146/annurev-physiol-022724-104846","DOIUrl":null,"url":null,"abstract":"<p><p>The Frank-Starling law and Anrep effect describe two intrinsic mechanisms that regulate contraction force in the heart. Based on recent advancements and the historical literature, we propose new perspectives and address several critical issues in this review. (<i>a</i>) The Frank-Starling mechanism and Anrep effect are dynamically linked and act synergistically. (<i>b</i>) An open question is how cardiomyocytes sense mechanical load and transduce to biochemical signals (called mechano-chemo-transduction or MCT) to regulate contraction in response to load changes. (<i>c</i>) One research focus is to identify various mechanosensors and decipher their downstream MCT pathways. (<i>d</i>) Innovative experimental techniques engage different mechanosensors that detect different local strain and stress in the cell architecture. (<i>e</i>) Closed-loop MCT feedback in the dynamic excitation-Ca2+ signaling-contraction system enables autoregulation of contraction in response to physiological load changes. (<i> f </i>) However, pathological overload such as volume and pressure overload lead to excessive MCT-Ca2+ gain, cardiac remodeling, and heart diseases.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Heart is a Smart Pump: Mechanotransduction Mechanisms of the Frank-Starling Law and the Anrep Effect.\",\"authors\":\"Ye Chen-Izu, Tamas Banyasz, John A Shaw, Leighton T Izu\",\"doi\":\"10.1146/annurev-physiol-022724-104846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Frank-Starling law and Anrep effect describe two intrinsic mechanisms that regulate contraction force in the heart. Based on recent advancements and the historical literature, we propose new perspectives and address several critical issues in this review. (<i>a</i>) The Frank-Starling mechanism and Anrep effect are dynamically linked and act synergistically. (<i>b</i>) An open question is how cardiomyocytes sense mechanical load and transduce to biochemical signals (called mechano-chemo-transduction or MCT) to regulate contraction in response to load changes. (<i>c</i>) One research focus is to identify various mechanosensors and decipher their downstream MCT pathways. (<i>d</i>) Innovative experimental techniques engage different mechanosensors that detect different local strain and stress in the cell architecture. (<i>e</i>) Closed-loop MCT feedback in the dynamic excitation-Ca2+ signaling-contraction system enables autoregulation of contraction in response to physiological load changes. (<i> f </i>) However, pathological overload such as volume and pressure overload lead to excessive MCT-Ca2+ gain, cardiac remodeling, and heart diseases.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-022724-104846\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022724-104846","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Frank-Starling定律和Anrep效应描述了调节心脏收缩力的两种内在机制。基于最近的进展和历史文献,我们提出了新的观点,并解决了几个关键问题。(a) Frank-Starling机制和Anrep效应是动态联系和协同作用的。(b)一个悬而未决的问题是心肌细胞如何感知机械负荷并转导生化信号(称为机械-化学-转导或MCT)来调节负荷变化时的收缩。(c)一个研究重点是识别各种机械传感器并破译其下游MCT途径。(d)创新的实验技术采用不同的机械传感器来检测细胞结构中不同的局部应变和应力。(e)动态兴奋- ca2 +信号-收缩系统中的闭环MCT反馈能够根据生理负荷变化自动调节收缩。(f)然而,容量和压力过载等病理性过载导致MCT-Ca2+过度获得,心脏重塑和心脏病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Heart is a Smart Pump: Mechanotransduction Mechanisms of the Frank-Starling Law and the Anrep Effect.

The Frank-Starling law and Anrep effect describe two intrinsic mechanisms that regulate contraction force in the heart. Based on recent advancements and the historical literature, we propose new perspectives and address several critical issues in this review. (a) The Frank-Starling mechanism and Anrep effect are dynamically linked and act synergistically. (b) An open question is how cardiomyocytes sense mechanical load and transduce to biochemical signals (called mechano-chemo-transduction or MCT) to regulate contraction in response to load changes. (c) One research focus is to identify various mechanosensors and decipher their downstream MCT pathways. (d) Innovative experimental techniques engage different mechanosensors that detect different local strain and stress in the cell architecture. (e) Closed-loop MCT feedback in the dynamic excitation-Ca2+ signaling-contraction system enables autoregulation of contraction in response to physiological load changes. ( f ) However, pathological overload such as volume and pressure overload lead to excessive MCT-Ca2+ gain, cardiac remodeling, and heart diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信