{"title":"瘤胃-乳腺轴与细菌细胞外囊泡:奶牛热应激研究的新视角","authors":"Qi Huang, Yang Xiao, Peng Sun","doi":"10.1016/j.aninu.2024.08.003","DOIUrl":null,"url":null,"abstract":"<p><p>Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"19 ","pages":"70-75"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612815/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows.\",\"authors\":\"Qi Huang, Yang Xiao, Peng Sun\",\"doi\":\"10.1016/j.aninu.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.</p>\",\"PeriodicalId\":8184,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"19 \",\"pages\":\"70-75\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aninu.2024.08.003\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.08.003","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows.
Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.