{"title":"抗急性肺损伤和肺纤维化的甘草次酸苷的设计与合成。","authors":"Wei Li, Jianrong Liu, Tianbo Wu, Xin Qiang, Yijie Peng, Quanyi Zhao, Dian He","doi":"10.1007/s11030-024-11058-6","DOIUrl":null,"url":null,"abstract":"<p><p>HMGB1 mediated signalling pathway plays an important role in acute injury and fibrosis in lung tissues. Glycyrrhizic acid (GL) is a HMGB1 inhibitor, and its aglycone (glycyrrhetinic acid, GA) is the major pharmacophore and plays the main role during binding to HMGB1. To improve selectivity for these lung diseases, a series of novel glycyrrhetinic acid glycosides targeting mannose acceptors in the respiratory tract and lung tissues were synthesised, and their biological activities were evaluated in vitro and in vivo. For normal lung cell lines WI-38 and Beas-2B, all the compounds but c6 showed reduced cytotoxicity vs the positive controls (GA and GL), IC<sub>50</sub> values were > 800 µM. For three cancer cells, c1 exhibited high selectivity for lung cancer cells A549. In the inflammation assays, compound c1 displayed the strongest activity of NO inhibition, and c4 was next; both them not only down-regulated the expression levels of IL-1β and TNF-α in RAW264.7 cells, but also decreased the levels of TNF-α, IL-1β, HMGB1, RAGE and ROS in A549 cells in a dose-dependent manner. Noteworthy, compound c1 of 50 μM reduced the levels of HMGB1 and RAGE to 38.4 and 37.0% of the LPS group, and it showed much higher binding affinity with HMGB1 than GL, which confirmed by molecular docking; in addition, c1 also inhibited the deposition of α-SMA and Col-1 proteins in TGF-β1-activated A549 cells. In the bleomycin-induced lung fibrosis mouse model, c1 decreased fibrous protein production and deposition in the lung tissues; at a 30 mg/kg dose, it reduced the levels of α-SMA and Col-1 to 48.12 and 56.37% of the BLM group, respectively. The pharmacokinetics tests showed c1 relative distribution rate in lung tissue (at 1 h, 18.86%; at 2 h, 12.80%) is much higher than that of GA (at 1 h, 2.8%; at 2 h, 1.9%). These results show compound c1 is likely to be a candidate for acute lung injury and pulmonary fibrosis.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and synthesis of glycyrrhetinic acid glycosides against acute lung injury and pulmonary fibrosis.\",\"authors\":\"Wei Li, Jianrong Liu, Tianbo Wu, Xin Qiang, Yijie Peng, Quanyi Zhao, Dian He\",\"doi\":\"10.1007/s11030-024-11058-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HMGB1 mediated signalling pathway plays an important role in acute injury and fibrosis in lung tissues. Glycyrrhizic acid (GL) is a HMGB1 inhibitor, and its aglycone (glycyrrhetinic acid, GA) is the major pharmacophore and plays the main role during binding to HMGB1. To improve selectivity for these lung diseases, a series of novel glycyrrhetinic acid glycosides targeting mannose acceptors in the respiratory tract and lung tissues were synthesised, and their biological activities were evaluated in vitro and in vivo. For normal lung cell lines WI-38 and Beas-2B, all the compounds but c6 showed reduced cytotoxicity vs the positive controls (GA and GL), IC<sub>50</sub> values were > 800 µM. For three cancer cells, c1 exhibited high selectivity for lung cancer cells A549. In the inflammation assays, compound c1 displayed the strongest activity of NO inhibition, and c4 was next; both them not only down-regulated the expression levels of IL-1β and TNF-α in RAW264.7 cells, but also decreased the levels of TNF-α, IL-1β, HMGB1, RAGE and ROS in A549 cells in a dose-dependent manner. Noteworthy, compound c1 of 50 μM reduced the levels of HMGB1 and RAGE to 38.4 and 37.0% of the LPS group, and it showed much higher binding affinity with HMGB1 than GL, which confirmed by molecular docking; in addition, c1 also inhibited the deposition of α-SMA and Col-1 proteins in TGF-β1-activated A549 cells. In the bleomycin-induced lung fibrosis mouse model, c1 decreased fibrous protein production and deposition in the lung tissues; at a 30 mg/kg dose, it reduced the levels of α-SMA and Col-1 to 48.12 and 56.37% of the BLM group, respectively. The pharmacokinetics tests showed c1 relative distribution rate in lung tissue (at 1 h, 18.86%; at 2 h, 12.80%) is much higher than that of GA (at 1 h, 2.8%; at 2 h, 1.9%). These results show compound c1 is likely to be a candidate for acute lung injury and pulmonary fibrosis.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11058-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11058-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Design and synthesis of glycyrrhetinic acid glycosides against acute lung injury and pulmonary fibrosis.
HMGB1 mediated signalling pathway plays an important role in acute injury and fibrosis in lung tissues. Glycyrrhizic acid (GL) is a HMGB1 inhibitor, and its aglycone (glycyrrhetinic acid, GA) is the major pharmacophore and plays the main role during binding to HMGB1. To improve selectivity for these lung diseases, a series of novel glycyrrhetinic acid glycosides targeting mannose acceptors in the respiratory tract and lung tissues were synthesised, and their biological activities were evaluated in vitro and in vivo. For normal lung cell lines WI-38 and Beas-2B, all the compounds but c6 showed reduced cytotoxicity vs the positive controls (GA and GL), IC50 values were > 800 µM. For three cancer cells, c1 exhibited high selectivity for lung cancer cells A549. In the inflammation assays, compound c1 displayed the strongest activity of NO inhibition, and c4 was next; both them not only down-regulated the expression levels of IL-1β and TNF-α in RAW264.7 cells, but also decreased the levels of TNF-α, IL-1β, HMGB1, RAGE and ROS in A549 cells in a dose-dependent manner. Noteworthy, compound c1 of 50 μM reduced the levels of HMGB1 and RAGE to 38.4 and 37.0% of the LPS group, and it showed much higher binding affinity with HMGB1 than GL, which confirmed by molecular docking; in addition, c1 also inhibited the deposition of α-SMA and Col-1 proteins in TGF-β1-activated A549 cells. In the bleomycin-induced lung fibrosis mouse model, c1 decreased fibrous protein production and deposition in the lung tissues; at a 30 mg/kg dose, it reduced the levels of α-SMA and Col-1 to 48.12 and 56.37% of the BLM group, respectively. The pharmacokinetics tests showed c1 relative distribution rate in lung tissue (at 1 h, 18.86%; at 2 h, 12.80%) is much higher than that of GA (at 1 h, 2.8%; at 2 h, 1.9%). These results show compound c1 is likely to be a candidate for acute lung injury and pulmonary fibrosis.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;