采用单纯点阵混合设计优化鹰嘴豆芽中UAE-NADES绿色提取工艺。

IF 8.7 1区 化学 Q1 ACOUSTICS
Ultrasonics Sonochemistry Pub Date : 2025-01-01 Epub Date: 2024-11-30 DOI:10.1016/j.ultsonch.2024.107186
Waseem Khalid, Hyrije Koraqi, Imed E Benmebarek, Andrés Moreno, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik
{"title":"采用单纯点阵混合设计优化鹰嘴豆芽中UAE-NADES绿色提取工艺。","authors":"Waseem Khalid, Hyrije Koraqi, Imed E Benmebarek, Andrés Moreno, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik","doi":"10.1016/j.ultsonch.2024.107186","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, a statistical tool called the simplex lattice mixture design method was used to create a new formulation of Natural Deep Eutectic Solvent (NADES), which is derived from a combination of three compounds (citric acid, glycerol, and water) to extract bioactive compounds from chickpea (Cicer arietinum L.) sprouts. The mixture (natural deep eutectic solvent) was formulated by combining three solvents including citric acid, glycerol, and water. The extraction was performed in a sonication bath for 30 min. The simultaneous optimization was performed to obtain the highest total polyphenol content (TPC), total flavonoid content (TFC) and antioxidants activity. The highest values of total polyphenol content (TPC), total flavonoid content (TFC) and antioxidant activity were 128.0 ± 0.2 mg GAE/100 g, 38.61 ± 0.03 mg CE/100 g and 2117 ± 1.8 µmol TE/100 g respectively. HPLC-DAD of the optimized extract was utilized for quantification of polyphenol compounds showing catechin as the main compound followed by chlorogenic acid, epicatechin, syringic acid, rutin, gallic acid, kaempferol 3-glucoside, ferulic acid, and coumaric acid. These findings may represent a significant advancement in the management of phenolic compound extraction for targeted uses, such as serving as alternatives to traditional antioxidants primarily employed in the food industry to improve nutritional quality. Furthermore, our research has shown that mixture designs are an efficient and useful method for structuring and optimizing experimental parameters to achieve the most accurate results with the minimum number of experiments.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107186"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of UAE-NADES green extraction of bioactive compounds from chickpea (Cicer arietinum L.) sprouts using simplex lattice mixture design methodology.\",\"authors\":\"Waseem Khalid, Hyrije Koraqi, Imed E Benmebarek, Andrés Moreno, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik\",\"doi\":\"10.1016/j.ultsonch.2024.107186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, a statistical tool called the simplex lattice mixture design method was used to create a new formulation of Natural Deep Eutectic Solvent (NADES), which is derived from a combination of three compounds (citric acid, glycerol, and water) to extract bioactive compounds from chickpea (Cicer arietinum L.) sprouts. The mixture (natural deep eutectic solvent) was formulated by combining three solvents including citric acid, glycerol, and water. The extraction was performed in a sonication bath for 30 min. The simultaneous optimization was performed to obtain the highest total polyphenol content (TPC), total flavonoid content (TFC) and antioxidants activity. The highest values of total polyphenol content (TPC), total flavonoid content (TFC) and antioxidant activity were 128.0 ± 0.2 mg GAE/100 g, 38.61 ± 0.03 mg CE/100 g and 2117 ± 1.8 µmol TE/100 g respectively. HPLC-DAD of the optimized extract was utilized for quantification of polyphenol compounds showing catechin as the main compound followed by chlorogenic acid, epicatechin, syringic acid, rutin, gallic acid, kaempferol 3-glucoside, ferulic acid, and coumaric acid. These findings may represent a significant advancement in the management of phenolic compound extraction for targeted uses, such as serving as alternatives to traditional antioxidants primarily employed in the food industry to improve nutritional quality. Furthermore, our research has shown that mixture designs are an efficient and useful method for structuring and optimizing experimental parameters to achieve the most accurate results with the minimum number of experiments.</p>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"112 \",\"pages\":\"107186\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultsonch.2024.107186\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107186","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用单纯形晶格混合设计方法,利用三种化合物(柠檬酸、甘油和水)从鹰嘴豆(Cicer arietinum L.)芽中提取生物活性物质,制备了天然深共晶溶剂(NADES)。该混合物(天然深共晶溶剂)由柠檬酸、甘油和水三种溶剂组合而成。在超声浴中提取30 min,同时进行优化,以获得最高的总多酚含量(TPC)、总黄酮含量(TFC)和抗氧化活性。总多酚含量(TPC)、总黄酮含量(TFC)和抗氧化活性最高值分别为128.0±0.2 mg GAE/100 g、38.61±0.03 mg CE/100 g和2117±1.8µmol TE/100 g。利用高效液相色谱- dad法对优化后的提取物进行多酚类化合物的定量分析,结果显示儿茶素为主要化合物,其次为绿原酸、表儿茶素、丁香酸、芦丁、没食子酸、山奈酚3-葡萄糖苷、阿魏酸、香豆酸。这些发现可能代表了酚类化合物提取在目标用途管理方面的重大进步,例如作为主要用于食品工业的传统抗氧化剂的替代品,以提高营养质量。此外,我们的研究表明,混合设计是一种有效和有用的方法,可以组织和优化实验参数,以最少的实验次数获得最准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of UAE-NADES green extraction of bioactive compounds from chickpea (Cicer arietinum L.) sprouts using simplex lattice mixture design methodology.

In the present study, a statistical tool called the simplex lattice mixture design method was used to create a new formulation of Natural Deep Eutectic Solvent (NADES), which is derived from a combination of three compounds (citric acid, glycerol, and water) to extract bioactive compounds from chickpea (Cicer arietinum L.) sprouts. The mixture (natural deep eutectic solvent) was formulated by combining three solvents including citric acid, glycerol, and water. The extraction was performed in a sonication bath for 30 min. The simultaneous optimization was performed to obtain the highest total polyphenol content (TPC), total flavonoid content (TFC) and antioxidants activity. The highest values of total polyphenol content (TPC), total flavonoid content (TFC) and antioxidant activity were 128.0 ± 0.2 mg GAE/100 g, 38.61 ± 0.03 mg CE/100 g and 2117 ± 1.8 µmol TE/100 g respectively. HPLC-DAD of the optimized extract was utilized for quantification of polyphenol compounds showing catechin as the main compound followed by chlorogenic acid, epicatechin, syringic acid, rutin, gallic acid, kaempferol 3-glucoside, ferulic acid, and coumaric acid. These findings may represent a significant advancement in the management of phenolic compound extraction for targeted uses, such as serving as alternatives to traditional antioxidants primarily employed in the food industry to improve nutritional quality. Furthermore, our research has shown that mixture designs are an efficient and useful method for structuring and optimizing experimental parameters to achieve the most accurate results with the minimum number of experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信