Xianfei Zhou, Yisheng Ling, Luoshun Huang, Fan Yang, Yang Zhang, Yong Lan
{"title":"HIF-3α通过下调TP53INP2抑制自噬促进胰腺癌细胞增殖和迁移","authors":"Xianfei Zhou, Yisheng Ling, Luoshun Huang, Fan Yang, Yang Zhang, Yong Lan","doi":"10.1007/s12013-024-01624-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is a highly aggressive malignant tumor, often diagnosed late, leading to a poor prognosis and extremely high mortality rates. In recent years, the role of cellular autophagy in tumors has become increasingly prominent, gradually becoming an important target for malignant tumors. HIF-3α is a member of HIF family with potential oncogenic function. However, the role of HIF-3α in pancreatic cancer is not clear. The present study revealed its role in pancreatic cancer by exploring the regulatory mechanism of HIF-3α on autophagy. HIF-3α was found markedly upregulated in pancreatic cancer cell lines. In HIF-3α silenced MiaPaCa-2 cells, largely declined migration distance, reduced number of invaded cells and colonies, increased number of autophagosome, downregulated p62, and upregulated Beclin1, LC3II/I, and ATG7 were observed, accompanied by elevated TP53INP2 expressions. on the contrary, in HIF-3α overexpressed PANC-1 cells, notably increased migration distance, and elevated number of invaded cells and colonies were observed, along with decreased autophagosome, upregulated p62, and downregulated Beclin1, LC3II/I, ATG7, and TP53INP2. Subsequently, HIF-3α overexpressed PANC-1 cells were transfected with TP53INP2 overexpressing vector. The influence of HIF-3α overexpression on the proliferation, migration, invasion, and autophagy was abolished by TP53INP2 overexpressing. Furthermore, HIF-3α overexpression facilitated the in vivo growth of PANC-1 cells, accompanied by the autophagy inhibition in tumor tissues, which were remarkably abolished by TP53INP2 overexpressing. Collectively, HIF-3α facilitated the proliferation and migration in pancreatic cancer by inhibiting autophagy through downregulating TP53INP2.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"2139-2150"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIF-3α Facilitates the Proliferation and Migration in Pancreatic Cancer by Inhibiting Autophagy Through Downregulating TP53INP2.\",\"authors\":\"Xianfei Zhou, Yisheng Ling, Luoshun Huang, Fan Yang, Yang Zhang, Yong Lan\",\"doi\":\"10.1007/s12013-024-01624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic cancer is a highly aggressive malignant tumor, often diagnosed late, leading to a poor prognosis and extremely high mortality rates. In recent years, the role of cellular autophagy in tumors has become increasingly prominent, gradually becoming an important target for malignant tumors. HIF-3α is a member of HIF family with potential oncogenic function. However, the role of HIF-3α in pancreatic cancer is not clear. The present study revealed its role in pancreatic cancer by exploring the regulatory mechanism of HIF-3α on autophagy. HIF-3α was found markedly upregulated in pancreatic cancer cell lines. In HIF-3α silenced MiaPaCa-2 cells, largely declined migration distance, reduced number of invaded cells and colonies, increased number of autophagosome, downregulated p62, and upregulated Beclin1, LC3II/I, and ATG7 were observed, accompanied by elevated TP53INP2 expressions. on the contrary, in HIF-3α overexpressed PANC-1 cells, notably increased migration distance, and elevated number of invaded cells and colonies were observed, along with decreased autophagosome, upregulated p62, and downregulated Beclin1, LC3II/I, ATG7, and TP53INP2. Subsequently, HIF-3α overexpressed PANC-1 cells were transfected with TP53INP2 overexpressing vector. The influence of HIF-3α overexpression on the proliferation, migration, invasion, and autophagy was abolished by TP53INP2 overexpressing. Furthermore, HIF-3α overexpression facilitated the in vivo growth of PANC-1 cells, accompanied by the autophagy inhibition in tumor tissues, which were remarkably abolished by TP53INP2 overexpressing. Collectively, HIF-3α facilitated the proliferation and migration in pancreatic cancer by inhibiting autophagy through downregulating TP53INP2.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"2139-2150\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01624-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01624-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HIF-3α Facilitates the Proliferation and Migration in Pancreatic Cancer by Inhibiting Autophagy Through Downregulating TP53INP2.
Pancreatic cancer is a highly aggressive malignant tumor, often diagnosed late, leading to a poor prognosis and extremely high mortality rates. In recent years, the role of cellular autophagy in tumors has become increasingly prominent, gradually becoming an important target for malignant tumors. HIF-3α is a member of HIF family with potential oncogenic function. However, the role of HIF-3α in pancreatic cancer is not clear. The present study revealed its role in pancreatic cancer by exploring the regulatory mechanism of HIF-3α on autophagy. HIF-3α was found markedly upregulated in pancreatic cancer cell lines. In HIF-3α silenced MiaPaCa-2 cells, largely declined migration distance, reduced number of invaded cells and colonies, increased number of autophagosome, downregulated p62, and upregulated Beclin1, LC3II/I, and ATG7 were observed, accompanied by elevated TP53INP2 expressions. on the contrary, in HIF-3α overexpressed PANC-1 cells, notably increased migration distance, and elevated number of invaded cells and colonies were observed, along with decreased autophagosome, upregulated p62, and downregulated Beclin1, LC3II/I, ATG7, and TP53INP2. Subsequently, HIF-3α overexpressed PANC-1 cells were transfected with TP53INP2 overexpressing vector. The influence of HIF-3α overexpression on the proliferation, migration, invasion, and autophagy was abolished by TP53INP2 overexpressing. Furthermore, HIF-3α overexpression facilitated the in vivo growth of PANC-1 cells, accompanied by the autophagy inhibition in tumor tissues, which were remarkably abolished by TP53INP2 overexpressing. Collectively, HIF-3α facilitated the proliferation and migration in pancreatic cancer by inhibiting autophagy through downregulating TP53INP2.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.