利用Janus结构:增强C3N5的内部电场以改善H2光催化。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianwei Yuan, Su Li, Zhaofei Dang, Sixia Liu, Fu Yang, Dongguang Wang, Hengcong Tao, Shuying Gao and Edison Huixiang Ang
{"title":"利用Janus结构:增强C3N5的内部电场以改善H2光催化。","authors":"Jianwei Yuan, Su Li, Zhaofei Dang, Sixia Liu, Fu Yang, Dongguang Wang, Hengcong Tao, Shuying Gao and Edison Huixiang Ang","doi":"10.1039/D4MH01316F","DOIUrl":null,"url":null,"abstract":"<p >Homojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (C<small><sub>3</sub></small>N<small><sub>5</sub></small>). In this design, super-sized, ultrathin nanosheets of carbon-rich C<small><sub>3</sub></small>N<small><sub>5</sub></small> grow epitaxially on a nitrogen-rich honeycomb network of C<small><sub>3</sub></small>N<small><sub>5</sub></small>, creating a tightly bound and extensive interfacial contact area. This arrangement enhances the built-in internal electric field (IEF) between the two forms of C<small><sub>3</sub></small>N<small><sub>5</sub></small>, facilitating faster directional transfer of photogenerated electrons and improved visible-light harvesting. Consequently, Janus-C<small><sub>3</sub></small>N<small><sub>5</sub></small> achieves a remarkable H<small><sub>2</sub></small> evolution rate of 1712.4 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small> under simulated sunlight, which is approximately 5.58 times higher than that of bulk C<small><sub>3</sub></small>N<small><sub>5</sub></small> (306.8 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) and 14.1 times higher than another form of bulk C<small><sub>3</sub></small>N<small><sub>5</sub></small> (121.2 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>). This work offers a new approach to design efficient homojunction-based photocatalysts.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 4","pages":" 1346-1354"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Janus structures: enhanced internal electric fields in C3N5 for improved H2 photocatalysis†\",\"authors\":\"Jianwei Yuan, Su Li, Zhaofei Dang, Sixia Liu, Fu Yang, Dongguang Wang, Hengcong Tao, Shuying Gao and Edison Huixiang Ang\",\"doi\":\"10.1039/D4MH01316F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Homojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (C<small><sub>3</sub></small>N<small><sub>5</sub></small>). In this design, super-sized, ultrathin nanosheets of carbon-rich C<small><sub>3</sub></small>N<small><sub>5</sub></small> grow epitaxially on a nitrogen-rich honeycomb network of C<small><sub>3</sub></small>N<small><sub>5</sub></small>, creating a tightly bound and extensive interfacial contact area. This arrangement enhances the built-in internal electric field (IEF) between the two forms of C<small><sub>3</sub></small>N<small><sub>5</sub></small>, facilitating faster directional transfer of photogenerated electrons and improved visible-light harvesting. Consequently, Janus-C<small><sub>3</sub></small>N<small><sub>5</sub></small> achieves a remarkable H<small><sub>2</sub></small> evolution rate of 1712.4 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small> under simulated sunlight, which is approximately 5.58 times higher than that of bulk C<small><sub>3</sub></small>N<small><sub>5</sub></small> (306.8 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) and 14.1 times higher than another form of bulk C<small><sub>3</sub></small>N<small><sub>5</sub></small> (121.2 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>). This work offers a new approach to design efficient homojunction-based photocatalysts.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 4\",\"pages\":\" 1346-1354\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01316f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01316f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

同结工程有望创造高性能光催化剂,但在建立和调节有效的结界面方面仍然存在重大挑战。为了解决这个问题,我们通过整合两种不同形式的三唑基氮化碳(C3N5),设计并构建了一种新型的Janus同结光催化剂。在这个设计中,超大尺寸、超薄的富含碳的C3N5纳米片外延生长在富含氮的C3N5蜂窝网络上,创造了一个紧密结合和广泛的界面接触区域。这种排列增强了两种形式C3N5之间的内置内部电场(IEF),促进了光电子更快的定向转移,并改善了可见光的收集。结果表明,在模拟阳光下,Janus-C3N5的H2演化速率为1712.4 μmol h-1 g-1,是C3N5块体(306.8 μmol h-1 g-1)的5.58倍,是C3N5块体(121.2 μmol h-1 g-1)的14.1倍。这项工作为设计高效的基于同结的光催化剂提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Janus structures: enhanced internal electric fields in C3N5 for improved H2 photocatalysis†

Harnessing Janus structures: enhanced internal electric fields in C3N5 for improved H2 photocatalysis†

Homojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (C3N5). In this design, super-sized, ultrathin nanosheets of carbon-rich C3N5 grow epitaxially on a nitrogen-rich honeycomb network of C3N5, creating a tightly bound and extensive interfacial contact area. This arrangement enhances the built-in internal electric field (IEF) between the two forms of C3N5, facilitating faster directional transfer of photogenerated electrons and improved visible-light harvesting. Consequently, Janus-C3N5 achieves a remarkable H2 evolution rate of 1712.4 μmol h−1 g−1 under simulated sunlight, which is approximately 5.58 times higher than that of bulk C3N5 (306.8 μmol h−1 g−1) and 14.1 times higher than another form of bulk C3N5 (121.2 μmol h−1 g−1). This work offers a new approach to design efficient homojunction-based photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信