Alshyn Abduvalov, Kamila Zhumanova, Marat Kaikanov, Alexander Tikhonov
{"title":"等离子体Au和光致发光Y2O3:Eu3+纳米粒子复合增强WO3光阳极的光活性","authors":"Alshyn Abduvalov, Kamila Zhumanova, Marat Kaikanov, Alexander Tikhonov","doi":"10.1021/acsomega.4c05546","DOIUrl":null,"url":null,"abstract":"<p><p>The WO<sub>3</sub> photoanode has great potential application for solar photoelectrochemical water oxidation due to suitable band edge positions with water oxidation potentials. However, it suffers from poor light absorbance in the visible region. Here, we use Eu<sup>3+</sup>-doped Y<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) in combination with plasmonic gold (Au) NPs to better utilize and adsorb photons from UV and visible regions of sunlight. We attached plasmonic Au NPs on WO<sub>3</sub> to enhance the photocatalytic properties due to the plasmon resonance mechanism. Additional deposition of Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> NPs on Au NPs/WO<sub>3</sub> improved the photoactivity of the photoanode further. Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> NPs' downconversion property, along with their light-scattering effect, converts ultraviolet-region photons into visible-region photons and enforces the plasmon resonance mechanism of Au NPs. Experimental results show the increase of absorbance, improvement of electron-hole separation, and enhancement in photocurrent generation of the resultant photoelectrode.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 47","pages":"46834-46840"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603220/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photoactivity Enhancement of WO<sub>3</sub> Photoanodes Using the Combined Effect of Plasmonic Au and Photoluminescent Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> Nanoparticles.\",\"authors\":\"Alshyn Abduvalov, Kamila Zhumanova, Marat Kaikanov, Alexander Tikhonov\",\"doi\":\"10.1021/acsomega.4c05546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The WO<sub>3</sub> photoanode has great potential application for solar photoelectrochemical water oxidation due to suitable band edge positions with water oxidation potentials. However, it suffers from poor light absorbance in the visible region. Here, we use Eu<sup>3+</sup>-doped Y<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) in combination with plasmonic gold (Au) NPs to better utilize and adsorb photons from UV and visible regions of sunlight. We attached plasmonic Au NPs on WO<sub>3</sub> to enhance the photocatalytic properties due to the plasmon resonance mechanism. Additional deposition of Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> NPs on Au NPs/WO<sub>3</sub> improved the photoactivity of the photoanode further. Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> NPs' downconversion property, along with their light-scattering effect, converts ultraviolet-region photons into visible-region photons and enforces the plasmon resonance mechanism of Au NPs. Experimental results show the increase of absorbance, improvement of electron-hole separation, and enhancement in photocurrent generation of the resultant photoelectrode.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 47\",\"pages\":\"46834-46840\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c05546\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c05546","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photoactivity Enhancement of WO3 Photoanodes Using the Combined Effect of Plasmonic Au and Photoluminescent Y2O3:Eu3+ Nanoparticles.
The WO3 photoanode has great potential application for solar photoelectrochemical water oxidation due to suitable band edge positions with water oxidation potentials. However, it suffers from poor light absorbance in the visible region. Here, we use Eu3+-doped Y2O3 nanoparticles (NPs) in combination with plasmonic gold (Au) NPs to better utilize and adsorb photons from UV and visible regions of sunlight. We attached plasmonic Au NPs on WO3 to enhance the photocatalytic properties due to the plasmon resonance mechanism. Additional deposition of Y2O3:Eu3+ NPs on Au NPs/WO3 improved the photoactivity of the photoanode further. Y2O3:Eu3+ NPs' downconversion property, along with their light-scattering effect, converts ultraviolet-region photons into visible-region photons and enforces the plasmon resonance mechanism of Au NPs. Experimental results show the increase of absorbance, improvement of electron-hole separation, and enhancement in photocurrent generation of the resultant photoelectrode.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.