HZB f2x设备——高效晶体碎片筛选平台

Tatjana Barthel, Laila Benz, Yara Basler, Thomas Crosskey, Alexander Dillmann, Ronald Förster, Paula Fröling, Camilla G. Dieguez, Christine Gless, Thomas Hauß, Michael Hellmig, Lea Jänisch, David James, Frank Lennartz, Jelena Mijatovic, Melanie Oelker, James W. Scanlan, Gert Weber, Jan Wollenhaupt, Uwe Mueller, Holger Dobbek, Markus C. Wahl, Manfred S. Weiss
{"title":"HZB f2x设备——高效晶体碎片筛选平台","authors":"Tatjana Barthel,&nbsp;Laila Benz,&nbsp;Yara Basler,&nbsp;Thomas Crosskey,&nbsp;Alexander Dillmann,&nbsp;Ronald Förster,&nbsp;Paula Fröling,&nbsp;Camilla G. Dieguez,&nbsp;Christine Gless,&nbsp;Thomas Hauß,&nbsp;Michael Hellmig,&nbsp;Lea Jänisch,&nbsp;David James,&nbsp;Frank Lennartz,&nbsp;Jelena Mijatovic,&nbsp;Melanie Oelker,&nbsp;James W. Scanlan,&nbsp;Gert Weber,&nbsp;Jan Wollenhaupt,&nbsp;Uwe Mueller,&nbsp;Holger Dobbek,&nbsp;Markus C. Wahl,&nbsp;Manfred S. Weiss","doi":"10.1002/appl.202400110","DOIUrl":null,"url":null,"abstract":"<p>Crystallographic fragment screening (CFS) has recently matured into an important method for the early stages of drug discovery projects. It is based on high-throughput structure determination and thus requires a high degree of automation as well as specialized workflows and robust analysis tools. Consequently, large-scale research facilities such as synchrotrons have embraced the method, and developed platforms to perform CFS campaigns with the help of crystallography experts and specific tools. The BESSY II synchrotron, operated by the Helmholtz–Zentrum Berlin (HZB), is one of these synchrotron facilities that offer a CFS platform, named the F2X-facility. Here, the specialized F2X workflow is described along with the relevant differences to other existing CFS platforms, and the ongoing developments aimed at supporting users of the facility. The different stages of a CFS campaign including requirements, beamline capabilities, and the software environment are detailed and explained. A unique F2X-GO kit is featured, which allows users the possibility of performing all sample preparation in their home laboratories. Furthermore, at the HZB a computational workflow has been built to support users beyond the hit identification stage. The advantages of the F2X-facility at HZB are described and references are provided to successfully conduct CFS.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400110","citationCount":"0","resultStr":"{\"title\":\"The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening Platform\",\"authors\":\"Tatjana Barthel,&nbsp;Laila Benz,&nbsp;Yara Basler,&nbsp;Thomas Crosskey,&nbsp;Alexander Dillmann,&nbsp;Ronald Förster,&nbsp;Paula Fröling,&nbsp;Camilla G. Dieguez,&nbsp;Christine Gless,&nbsp;Thomas Hauß,&nbsp;Michael Hellmig,&nbsp;Lea Jänisch,&nbsp;David James,&nbsp;Frank Lennartz,&nbsp;Jelena Mijatovic,&nbsp;Melanie Oelker,&nbsp;James W. Scanlan,&nbsp;Gert Weber,&nbsp;Jan Wollenhaupt,&nbsp;Uwe Mueller,&nbsp;Holger Dobbek,&nbsp;Markus C. Wahl,&nbsp;Manfred S. Weiss\",\"doi\":\"10.1002/appl.202400110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crystallographic fragment screening (CFS) has recently matured into an important method for the early stages of drug discovery projects. It is based on high-throughput structure determination and thus requires a high degree of automation as well as specialized workflows and robust analysis tools. Consequently, large-scale research facilities such as synchrotrons have embraced the method, and developed platforms to perform CFS campaigns with the help of crystallography experts and specific tools. The BESSY II synchrotron, operated by the Helmholtz–Zentrum Berlin (HZB), is one of these synchrotron facilities that offer a CFS platform, named the F2X-facility. Here, the specialized F2X workflow is described along with the relevant differences to other existing CFS platforms, and the ongoing developments aimed at supporting users of the facility. The different stages of a CFS campaign including requirements, beamline capabilities, and the software environment are detailed and explained. A unique F2X-GO kit is featured, which allows users the possibility of performing all sample preparation in their home laboratories. Furthermore, at the HZB a computational workflow has been built to support users beyond the hit identification stage. The advantages of the F2X-facility at HZB are described and references are provided to successfully conduct CFS.</p>\",\"PeriodicalId\":100109,\"journal\":{\"name\":\"Applied Research\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/appl.202400110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202400110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晶体片段筛选(CFS)已成为药物发现项目早期阶段的一种重要方法。它基于高通量的结构确定,因此需要高度的自动化以及专门的工作流程和健壮的分析工具。因此,同步加速器等大型研究机构已经采用了这种方法,并在晶体学专家和特定工具的帮助下开发了执行CFS活动的平台。由柏林亥姆霍兹中心(HZB)运营的BESSY II同步加速器是这些提供CFS平台的同步加速器设施之一,名为f2x设施。这里介绍了专门的F2X工作流程,以及与其他现有CFS平台的相关差异,以及旨在支持该设施用户的持续开发。详细解释了CFS活动的不同阶段,包括需求、光束线功能和软件环境。一个独特的F2X-GO试剂盒的特点,它允许用户在他们的家庭实验室执行所有样品制备的可能性。此外,在HZB,已经建立了一个计算工作流来支持用户超越命中识别阶段。介绍了港珠澳f2x设施的优点,并为成功地进行CFS提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening Platform

The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening Platform

Crystallographic fragment screening (CFS) has recently matured into an important method for the early stages of drug discovery projects. It is based on high-throughput structure determination and thus requires a high degree of automation as well as specialized workflows and robust analysis tools. Consequently, large-scale research facilities such as synchrotrons have embraced the method, and developed platforms to perform CFS campaigns with the help of crystallography experts and specific tools. The BESSY II synchrotron, operated by the Helmholtz–Zentrum Berlin (HZB), is one of these synchrotron facilities that offer a CFS platform, named the F2X-facility. Here, the specialized F2X workflow is described along with the relevant differences to other existing CFS platforms, and the ongoing developments aimed at supporting users of the facility. The different stages of a CFS campaign including requirements, beamline capabilities, and the software environment are detailed and explained. A unique F2X-GO kit is featured, which allows users the possibility of performing all sample preparation in their home laboratories. Furthermore, at the HZB a computational workflow has been built to support users beyond the hit identification stage. The advantages of the F2X-facility at HZB are described and references are provided to successfully conduct CFS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信