从数据到发现:化学中的人工智能

IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Prof. Dr. Franziska Hess
{"title":"从数据到发现:化学中的人工智能","authors":"Prof. Dr. Franziska Hess","doi":"10.1002/ciuz.202400021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.</p>\n </div>","PeriodicalId":9911,"journal":{"name":"Chemie in Unserer Zeit","volume":"58 6","pages":"334-341"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Von Daten zu Entdeckungen: Künstliche Intelligenz in der Chemie\",\"authors\":\"Prof. Dr. Franziska Hess\",\"doi\":\"10.1002/ciuz.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.</p>\\n </div>\",\"PeriodicalId\":9911,\"journal\":{\"name\":\"Chemie in Unserer Zeit\",\"volume\":\"58 6\",\"pages\":\"334-341\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie in Unserer Zeit\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ciuz.202400021\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie in Unserer Zeit","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ciuz.202400021","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在利用大型数据集中的复杂关系方面具有巨大的潜力。主要的挑战在于识别抽象数据中的相关特征,如分子、化合物或光谱。使用监督或非监督学习方法对模型进行训练和测试。主动学习和迭代过程提高了准确性。人工智能为研究和工业提供了精确预测和创新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Von Daten zu Entdeckungen: Künstliche Intelligenz in der Chemie

Von Daten zu Entdeckungen: Künstliche Intelligenz in der Chemie

Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemie in Unserer Zeit
Chemie in Unserer Zeit 化学-化学综合
CiteScore
0.70
自引率
75.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Chemie in unserer Zeit informiert zuverlässig über aktuelle Entwicklungen aus der Chemie und ihren Nachbardisziplinen. Der Leser erhält spannende Einblicke in alle Bereiche dieser zukunftsträchtigen Wissenschaft, dabei werden auch komplexe Sachverhalte verständlich aufbereitet. Namhafte Experten bringen Neuentwicklungen von großer Tragweite näher - farbig illustriert und leserfreundlich präsentiert. Von wissenschaftlichen Übersichten, studienbegleitenden Materialien, nachvollziehbaren Experimenten bis hin zu brisanten Themen aus Umweltchemie und aktueller gesellschaftlicher Diskussion. Übersichtsartikel und abwechslungsreiche Rubriken vermitteln Fachwissen auf unterhaltsame Art und geben eine Hilfe bei der Orientierung im Fachgebiet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信