{"title":"从数据到发现:化学中的人工智能","authors":"Prof. Dr. Franziska Hess","doi":"10.1002/ciuz.202400021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.</p>\n </div>","PeriodicalId":9911,"journal":{"name":"Chemie in Unserer Zeit","volume":"58 6","pages":"334-341"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Von Daten zu Entdeckungen: Künstliche Intelligenz in der Chemie\",\"authors\":\"Prof. Dr. Franziska Hess\",\"doi\":\"10.1002/ciuz.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.</p>\\n </div>\",\"PeriodicalId\":9911,\"journal\":{\"name\":\"Chemie in Unserer Zeit\",\"volume\":\"58 6\",\"pages\":\"334-341\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie in Unserer Zeit\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ciuz.202400021\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie in Unserer Zeit","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ciuz.202400021","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Von Daten zu Entdeckungen: Künstliche Intelligenz in der Chemie
Artificial Intelligence (AI) holds great potential in leveraging complex relationships within large datasets. The primary challenge lies in identifying relevant features in abstract data such as molecules, compounds or spectra. Models are trained and tested using supervised or unsupervised learning methods. Active learning and iterative processes enhance accuracy. AI offers the potential for precise predictions and innovation in both research and industry.
期刊介绍:
Chemie in unserer Zeit informiert zuverlässig über aktuelle Entwicklungen aus der Chemie und ihren Nachbardisziplinen. Der Leser erhält spannende Einblicke in alle Bereiche dieser zukunftsträchtigen Wissenschaft, dabei werden auch komplexe Sachverhalte verständlich aufbereitet.
Namhafte Experten bringen Neuentwicklungen von großer Tragweite näher - farbig illustriert und leserfreundlich präsentiert. Von wissenschaftlichen Übersichten, studienbegleitenden Materialien, nachvollziehbaren Experimenten bis hin zu brisanten Themen aus Umweltchemie und aktueller gesellschaftlicher Diskussion. Übersichtsartikel und abwechslungsreiche Rubriken vermitteln Fachwissen auf unterhaltsame Art und geben eine Hilfe bei der Orientierung im Fachgebiet.