解淀粉芽孢杆菌与亚硒酸钠联合施用通过调节根际细菌群落,促进茶树幼苗生长和硒的吸收

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Liu Li, Lin Luo, Juan Zhan, Ali Raza, Chunying Yin
{"title":"解淀粉芽孢杆菌与亚硒酸钠联合施用通过调节根际细菌群落,促进茶树幼苗生长和硒的吸收","authors":"Liu Li, Lin Luo, Juan Zhan, Ali Raza, Chunying Yin","doi":"10.1007/s00374-024-01883-0","DOIUrl":null,"url":null,"abstract":"<p><i>Bacillus amyloliquefaciens</i> is a widely used plant growth-promoting rhizobacterium. To investigate its role and mechanisms in selenium (Se) biofortification in crops, a pot experiment with four treatments including no application of Se fertilizer and <i>B. amyloliquefaciens</i> (control), <i>B. amyloliquefaciens</i> application (BA), Se fertilizer application (Se), and combined <i>B. amyloliquefaciens</i> and Se fertilizer application (BA + Se) was conducted. The results showed that, BA + Se treatment significantly increased total biomass of tea seedling compared with control, BA and Se treatments. Additionally, compared with Se treatment, BA + Se treatment significantly increased the Se concentrations in root and leaf, and Se content in the whole tea seedling by 101.4%, 34.5%, and 149.5%, respectively; BA + Se treatment also significantly increased the soil exchangeable Se and total available Se concentrations. Compared with control, BA treatment upregulated the expression level of <i>CsPHT1;2b</i>; Se treatment upregulated the expression levels of <i>CsSULTR1;1</i>, <i>CsSULTR1;2</i>, <i>CsPHT1;2a</i> and <i>CsPHT1;2b</i>; BA + Se treatment upregulated the <i>CsSULTR1;1</i> and <i>CsPHT1;2a</i> expression levels in tea seedling roots. The 16S rRNA indicated that BA and Se treatments had no effects on the diversity of rhizosphere bacterial community, but altered bacterial community composition. Soil pH was the most important environmental factor affecting rhizosphere bacterial community composition. BA + Se treatment significantly increased soil pH and the complexity of rhizosphere bacterial symbiotic network, compared with other three treatments. Furthermore, comparative analysis about rhizosphere soil properties and bacterial community composition and function between Se and BA + Se treatments, suggested that BA + Se treatment promoted soil Se availability by recruiting <i>g_Sinomonas</i> species and regulating the abundance of Se reductase in the rhizosphere.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"110 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined application of Bacillus amyloliquefaciens and sodium selenite promotes tea seedling growth and selenium uptake by regulating the rhizosphere bacterial community\",\"authors\":\"Liu Li, Lin Luo, Juan Zhan, Ali Raza, Chunying Yin\",\"doi\":\"10.1007/s00374-024-01883-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Bacillus amyloliquefaciens</i> is a widely used plant growth-promoting rhizobacterium. To investigate its role and mechanisms in selenium (Se) biofortification in crops, a pot experiment with four treatments including no application of Se fertilizer and <i>B. amyloliquefaciens</i> (control), <i>B. amyloliquefaciens</i> application (BA), Se fertilizer application (Se), and combined <i>B. amyloliquefaciens</i> and Se fertilizer application (BA + Se) was conducted. The results showed that, BA + Se treatment significantly increased total biomass of tea seedling compared with control, BA and Se treatments. Additionally, compared with Se treatment, BA + Se treatment significantly increased the Se concentrations in root and leaf, and Se content in the whole tea seedling by 101.4%, 34.5%, and 149.5%, respectively; BA + Se treatment also significantly increased the soil exchangeable Se and total available Se concentrations. Compared with control, BA treatment upregulated the expression level of <i>CsPHT1;2b</i>; Se treatment upregulated the expression levels of <i>CsSULTR1;1</i>, <i>CsSULTR1;2</i>, <i>CsPHT1;2a</i> and <i>CsPHT1;2b</i>; BA + Se treatment upregulated the <i>CsSULTR1;1</i> and <i>CsPHT1;2a</i> expression levels in tea seedling roots. The 16S rRNA indicated that BA and Se treatments had no effects on the diversity of rhizosphere bacterial community, but altered bacterial community composition. Soil pH was the most important environmental factor affecting rhizosphere bacterial community composition. BA + Se treatment significantly increased soil pH and the complexity of rhizosphere bacterial symbiotic network, compared with other three treatments. Furthermore, comparative analysis about rhizosphere soil properties and bacterial community composition and function between Se and BA + Se treatments, suggested that BA + Se treatment promoted soil Se availability by recruiting <i>g_Sinomonas</i> species and regulating the abundance of Se reductase in the rhizosphere.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01883-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01883-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

解淀粉芽孢杆菌是一种应用广泛的植物促生长根瘤菌。为探讨其在作物硒(Se)生物强化中的作用和机制,采用不施硒和不施解淀粉芽孢杆菌(对照)、施解淀粉芽孢杆菌(BA)、施硒(Se)、施解淀粉芽孢杆菌和施硒(BA + Se) 4种处理进行了盆栽试验。结果表明,与对照、BA和Se处理相比,BA + Se处理显著提高了茶树幼苗的总生物量。此外,与硒处理相比,BA + Se处理显著提高了根、叶硒浓度和全苗硒含量,分别提高了101.4%、34.5%和149.5%;BA + Se处理也显著提高了土壤交换态硒和全有效态硒浓度。与对照组相比,BA处理上调了CsPHT1的表达水平;Se处理上调CsSULTR1, 1, CsSULTR1, 2, CsPHT1, 2a和CsPHT1, 2b的表达水平;BA + Se处理上调了茶苗根中CsSULTR1;1和CsPHT1;2a的表达水平。16S rRNA表明,BA和Se处理对根际细菌群落多样性没有影响,但改变了细菌群落组成。土壤pH是影响根际细菌群落组成的最重要环境因子。与其他3种处理相比,BA + Se处理显著提高了土壤pH值和根际细菌共生网络的复杂性。此外,对比分析了硒处理和BA + Se处理根际土壤特性和细菌群落组成及功能,表明BA + Se处理通过招募g_Sinomonas种类和调节根际硒还原酶丰度来促进土壤硒有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined application of Bacillus amyloliquefaciens and sodium selenite promotes tea seedling growth and selenium uptake by regulating the rhizosphere bacterial community

Bacillus amyloliquefaciens is a widely used plant growth-promoting rhizobacterium. To investigate its role and mechanisms in selenium (Se) biofortification in crops, a pot experiment with four treatments including no application of Se fertilizer and B. amyloliquefaciens (control), B. amyloliquefaciens application (BA), Se fertilizer application (Se), and combined B. amyloliquefaciens and Se fertilizer application (BA + Se) was conducted. The results showed that, BA + Se treatment significantly increased total biomass of tea seedling compared with control, BA and Se treatments. Additionally, compared with Se treatment, BA + Se treatment significantly increased the Se concentrations in root and leaf, and Se content in the whole tea seedling by 101.4%, 34.5%, and 149.5%, respectively; BA + Se treatment also significantly increased the soil exchangeable Se and total available Se concentrations. Compared with control, BA treatment upregulated the expression level of CsPHT1;2b; Se treatment upregulated the expression levels of CsSULTR1;1, CsSULTR1;2, CsPHT1;2a and CsPHT1;2b; BA + Se treatment upregulated the CsSULTR1;1 and CsPHT1;2a expression levels in tea seedling roots. The 16S rRNA indicated that BA and Se treatments had no effects on the diversity of rhizosphere bacterial community, but altered bacterial community composition. Soil pH was the most important environmental factor affecting rhizosphere bacterial community composition. BA + Se treatment significantly increased soil pH and the complexity of rhizosphere bacterial symbiotic network, compared with other three treatments. Furthermore, comparative analysis about rhizosphere soil properties and bacterial community composition and function between Se and BA + Se treatments, suggested that BA + Se treatment promoted soil Se availability by recruiting g_Sinomonas species and regulating the abundance of Se reductase in the rhizosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信