三金属协同增强水氧化的原位x射线光谱与理论联合研究

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yalei Fan, Xubin Ye, Jing Zhou, Dabiao Lu, Chang-Yang Kuo, Yu-Cheng Huang, Ting-Shan Chan, Chien-Te Chen, Youwen Long, Jian-Qiang Wang, Zhiwei Hu, Linjuan Zhang
{"title":"三金属协同增强水氧化的原位x射线光谱与理论联合研究","authors":"Yalei Fan,&nbsp;Xubin Ye,&nbsp;Jing Zhou,&nbsp;Dabiao Lu,&nbsp;Chang-Yang Kuo,&nbsp;Yu-Cheng Huang,&nbsp;Ting-Shan Chan,&nbsp;Chien-Te Chen,&nbsp;Youwen Long,&nbsp;Jian-Qiang Wang,&nbsp;Zhiwei Hu,&nbsp;Linjuan Zhang","doi":"10.1002/aenm.202404599","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical water-splitting is vital in energy storage and conversion applications. However, the sluggish kinetics of the oxygen evolution reaction (OER) hinders the electrochemical water-splitting. Therefore, developing efficient catalysts and understanding the OER mechanism are highly desirable. This study successfully synthesized a new quadruple perovskite oxide CaCu<sub>3</sub>Co<sub>2</sub>Ru<sub>2</sub>O<sub>12</sub> (CCCRO) catalyst exhibiting high OER activity with overpotential 198 mV at 10 mA cm<sup>−2</sup>, a Tafel slope of 37 mV dec<sup>−1</sup>, and long-term operational stability with a current density of 500 mA cm<sup>−2</sup> for &gt;500 h. The in situ X-ray absorption near-edge structure (XANES) indicated that a part of high-spin (HS) Co<sup>3+</sup> ions and low-spin (LS) Ru<sup>5+</sup> ions transitioned to the tetravalent Co (IV) and hexavalent Ru (VI) valence states under OER. However, the Cu<sup>2+</sup> valence state remained unchanged. Furthermore, the density functional theory (DFT) calculations reveal that the lattice-oxygen oxidation mechanism (LOM) rather than conventional adsorbate evolution mechanism (AEM) is responsible for high OER activity in Ru (VI)-O-Co (IV) network, and that the Cu(A’)/Co(B)/Ru(B’) three sites synergistically facilitate the OER activity for CCCRO.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 15","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202404599","citationCount":"0","resultStr":"{\"title\":\"Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation\",\"authors\":\"Yalei Fan,&nbsp;Xubin Ye,&nbsp;Jing Zhou,&nbsp;Dabiao Lu,&nbsp;Chang-Yang Kuo,&nbsp;Yu-Cheng Huang,&nbsp;Ting-Shan Chan,&nbsp;Chien-Te Chen,&nbsp;Youwen Long,&nbsp;Jian-Qiang Wang,&nbsp;Zhiwei Hu,&nbsp;Linjuan Zhang\",\"doi\":\"10.1002/aenm.202404599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical water-splitting is vital in energy storage and conversion applications. However, the sluggish kinetics of the oxygen evolution reaction (OER) hinders the electrochemical water-splitting. Therefore, developing efficient catalysts and understanding the OER mechanism are highly desirable. This study successfully synthesized a new quadruple perovskite oxide CaCu<sub>3</sub>Co<sub>2</sub>Ru<sub>2</sub>O<sub>12</sub> (CCCRO) catalyst exhibiting high OER activity with overpotential 198 mV at 10 mA cm<sup>−2</sup>, a Tafel slope of 37 mV dec<sup>−1</sup>, and long-term operational stability with a current density of 500 mA cm<sup>−2</sup> for &gt;500 h. The in situ X-ray absorption near-edge structure (XANES) indicated that a part of high-spin (HS) Co<sup>3+</sup> ions and low-spin (LS) Ru<sup>5+</sup> ions transitioned to the tetravalent Co (IV) and hexavalent Ru (VI) valence states under OER. However, the Cu<sup>2+</sup> valence state remained unchanged. Furthermore, the density functional theory (DFT) calculations reveal that the lattice-oxygen oxidation mechanism (LOM) rather than conventional adsorbate evolution mechanism (AEM) is responsible for high OER activity in Ru (VI)-O-Co (IV) network, and that the Cu(A’)/Co(B)/Ru(B’) three sites synergistically facilitate the OER activity for CCCRO.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"15 15\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202404599\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202404599\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202404599","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学水分解在能量存储和转换应用中是至关重要的。然而,析氧反应(OER)的缓慢动力学阻碍了电化学水分解。因此,开发高效的催化剂和了解OER机理是非常必要的。本研究成功合成了一种新型四重钙钛矿氧化物CaCu3Co2Ru2O12 (CCCRO)催化剂,该催化剂在10 mA cm−2下具有高OER活性,过电位198 mV, Tafel斜率为37 mV dec−1。原位x射线吸收近边结构(XANES)表明,在OER作用下,部分高自旋(HS) Co3+离子和低自旋(LS) Ru5+离子转变为四价态Co (IV)和六价态Ru (VI)。然而,Cu2+价态保持不变。此外,密度泛函理论(DFT)计算表明,Ru(VI)-O-Co (IV)网络中OER活性高的原因是晶格-氧氧化机制(LOM)而不是传统的吸附物演化机制(AEM), Cu(A’)/Co(B)/Ru(B’)三个位点协同促进了CCCRO的OER活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation

Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation

Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation

Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation

Combined In Situ X-Ray Spectroscopic and Theoretical Study on Trimetal Synergistic Enhancement of Water Oxidation

Electrochemical water-splitting is vital in energy storage and conversion applications. However, the sluggish kinetics of the oxygen evolution reaction (OER) hinders the electrochemical water-splitting. Therefore, developing efficient catalysts and understanding the OER mechanism are highly desirable. This study successfully synthesized a new quadruple perovskite oxide CaCu3Co2Ru2O12 (CCCRO) catalyst exhibiting high OER activity with overpotential 198 mV at 10 mA cm−2, a Tafel slope of 37 mV dec−1, and long-term operational stability with a current density of 500 mA cm−2 for >500 h. The in situ X-ray absorption near-edge structure (XANES) indicated that a part of high-spin (HS) Co3+ ions and low-spin (LS) Ru5+ ions transitioned to the tetravalent Co (IV) and hexavalent Ru (VI) valence states under OER. However, the Cu2+ valence state remained unchanged. Furthermore, the density functional theory (DFT) calculations reveal that the lattice-oxygen oxidation mechanism (LOM) rather than conventional adsorbate evolution mechanism (AEM) is responsible for high OER activity in Ru (VI)-O-Co (IV) network, and that the Cu(A’)/Co(B)/Ru(B’) three sites synergistically facilitate the OER activity for CCCRO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信