用DMD400技术印刷的高效大面积半透明染料敏化太阳能电池(DSSCs)

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahfoudh Raïssi, Himal Muwanwella, Falak Naz, Anaïs Bianchi, Didier Rousseau, Muhammad Tariq Sajjad
{"title":"用DMD400技术印刷的高效大面积半透明染料敏化太阳能电池(DSSCs)","authors":"Mahfoudh Raïssi,&nbsp;Himal Muwanwella,&nbsp;Falak Naz,&nbsp;Anaïs Bianchi,&nbsp;Didier Rousseau,&nbsp;Muhammad Tariq Sajjad","doi":"10.1002/admt.202400637","DOIUrl":null,"url":null,"abstract":"<p>This work presents the development of fully printed, large-area, semi-transparent Dye-Sensitized Solar Cells (DSSCs) using TiO<sub>2</sub> nanoparticles treated with TiCl<sub>4</sub>, a “D35” push-pull dye sensitizer, and I<sub>3</sub><sup>−</sup>/I<sup>−</sup> redox mediator. Cells with areas of 4 and 200 cm<sup>2</sup> were printed using hexagonal, stripe, and standard designs, employing digital materials deposition (DMD) technology. The porous films printed via DMD, confirmed by scanning electron microscopy (SEM), improved solar cells performance by enhancing the Open Circuit Voltage (Voc) and fill factor (FF). The hexagonal design, in particular, facilitated better electrolyte impregnation in the TiO<sub>2</sub> mesoporous structure, boosting current density. This design yielded a power conversion efficiency (PCE) of 7.05% for 4 cm<sup>2</sup> DSSCs, surpassing the stripe (5.50%) and standard (5.48%) designs. Its higher performance can be attributed to lower interfacial charge recombination rates and improvedcharge transfer and collection efficiency. Photophysical measurements indicated faster charge transfer rates in hexagonal cells (≈ 1.3  ×  10<sup>9</sup>s<sup>−1</sup>) compared to the stripe (9.8  ×  10<sup>8</sup> s<sup>−1</sup>) and standard (9.5  ×  10<sup>8</sup> s<sup>−1</sup>) designs. Hence, our work highlights the potential of hexagonal design to improve both efficiency and transparency while reducing material consumption, offering a promising approach for manufacturing semi-transparent solar cells.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 23","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400637","citationCount":"0","resultStr":"{\"title\":\"Efficient Large Area Semi-Transparent Dye-Sensitized Solar Cells (DSSCs) Printed with DMD400 Technology\",\"authors\":\"Mahfoudh Raïssi,&nbsp;Himal Muwanwella,&nbsp;Falak Naz,&nbsp;Anaïs Bianchi,&nbsp;Didier Rousseau,&nbsp;Muhammad Tariq Sajjad\",\"doi\":\"10.1002/admt.202400637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents the development of fully printed, large-area, semi-transparent Dye-Sensitized Solar Cells (DSSCs) using TiO<sub>2</sub> nanoparticles treated with TiCl<sub>4</sub>, a “D35” push-pull dye sensitizer, and I<sub>3</sub><sup>−</sup>/I<sup>−</sup> redox mediator. Cells with areas of 4 and 200 cm<sup>2</sup> were printed using hexagonal, stripe, and standard designs, employing digital materials deposition (DMD) technology. The porous films printed via DMD, confirmed by scanning electron microscopy (SEM), improved solar cells performance by enhancing the Open Circuit Voltage (Voc) and fill factor (FF). The hexagonal design, in particular, facilitated better electrolyte impregnation in the TiO<sub>2</sub> mesoporous structure, boosting current density. This design yielded a power conversion efficiency (PCE) of 7.05% for 4 cm<sup>2</sup> DSSCs, surpassing the stripe (5.50%) and standard (5.48%) designs. Its higher performance can be attributed to lower interfacial charge recombination rates and improvedcharge transfer and collection efficiency. Photophysical measurements indicated faster charge transfer rates in hexagonal cells (≈ 1.3  ×  10<sup>9</sup>s<sup>−1</sup>) compared to the stripe (9.8  ×  10<sup>8</sup> s<sup>−1</sup>) and standard (9.5  ×  10<sup>8</sup> s<sup>−1</sup>) designs. Hence, our work highlights the potential of hexagonal design to improve both efficiency and transparency while reducing material consumption, offering a promising approach for manufacturing semi-transparent solar cells.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 23\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400637\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400637\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400637","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种全印刷、大面积、半透明的染料敏化太阳能电池(DSSCs),该电池使用二氧化钛纳米颗粒经TiCl4(一种“D35”推挽式染料敏化剂)和I3 - /I -氧化还原介质处理。采用数字材料沉积(DMD)技术,使用六边形、条纹和标准设计打印面积为4和200 cm2的细胞。扫描电镜(SEM)证实,通过DMD打印的多孔膜通过提高开路电压(Voc)和填充因子(FF)改善了太阳能电池的性能。特别是六边形设计,有利于TiO2介孔结构中更好的电解质浸渍,提高电流密度。该设计为4平方厘米的DSSCs提供了7.05%的功率转换效率(PCE),超过了条形(5.50%)和标准(5.48%)设计。其较高的性能可归因于较低的界面电荷复合率和提高的电荷转移和收集效率。光物理测量表明,与条形电池(9.8 × 108 s−1)和标准电池(9.5 × 108 s−1)设计相比,六边形电池的电荷转移速率(≈1.3 × 109s−1)更快。因此,我们的工作强调了六边形设计在提高效率和透明度的同时减少材料消耗的潜力,为制造半透明太阳能电池提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Large Area Semi-Transparent Dye-Sensitized Solar Cells (DSSCs) Printed with DMD400 Technology

Efficient Large Area Semi-Transparent Dye-Sensitized Solar Cells (DSSCs) Printed with DMD400 Technology

This work presents the development of fully printed, large-area, semi-transparent Dye-Sensitized Solar Cells (DSSCs) using TiO2 nanoparticles treated with TiCl4, a “D35” push-pull dye sensitizer, and I3/I redox mediator. Cells with areas of 4 and 200 cm2 were printed using hexagonal, stripe, and standard designs, employing digital materials deposition (DMD) technology. The porous films printed via DMD, confirmed by scanning electron microscopy (SEM), improved solar cells performance by enhancing the Open Circuit Voltage (Voc) and fill factor (FF). The hexagonal design, in particular, facilitated better electrolyte impregnation in the TiO2 mesoporous structure, boosting current density. This design yielded a power conversion efficiency (PCE) of 7.05% for 4 cm2 DSSCs, surpassing the stripe (5.50%) and standard (5.48%) designs. Its higher performance can be attributed to lower interfacial charge recombination rates and improvedcharge transfer and collection efficiency. Photophysical measurements indicated faster charge transfer rates in hexagonal cells (≈ 1.3  ×  109s−1) compared to the stripe (9.8  ×  108 s−1) and standard (9.5  ×  108 s−1) designs. Hence, our work highlights the potential of hexagonal design to improve both efficiency and transparency while reducing material consumption, offering a promising approach for manufacturing semi-transparent solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信