Zhenhua Liu, Wei Liang, Ning Fu, Liyan Qiao, Jun Zhang
{"title":"基于盲源分离和能量检测的单脉冲雷达主瓣欺骗性干扰抑制","authors":"Zhenhua Liu, Wei Liang, Ning Fu, Liyan Qiao, Jun Zhang","doi":"10.1049/rsn2.12644","DOIUrl":null,"url":null,"abstract":"<p>Main lobe deceptive jamming always causes the serious degradation of signal detection ability and angle measurement precision of monopulse radar. In recent years, the Blind Source Separation (BSS) method has been adopted to suppress the main lobe jamming. However, the separation results of BSS have the problem of amplitude ambiguity, which will cause the radar using monopulse angle measurement fail to measure the angle parameters after jamming suppression. To tackle this problem, a novel main lobe jamming suppression method is proposed based on BSS and energy detection. Firstly, the models of target echoes and jamming in the sum and difference beam receiving channels are derived. Secondly, the target echoes and interferences are separated by the Joint Approximate Diagonalisation of Eigenmatrices (JADE) algorithm, and then the unperturbed signal segments in the mixed signal are extracted by energy detection, thereby obtaining the precise ratio of the sum and difference channels to complete the angle measurement. Performance of the method was verified by numerical simulation. The results show that the proposed method can achieve interference suppression while accurately estimating the angle parameter of the target.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 11","pages":"2170-2181"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12644","citationCount":"0","resultStr":"{\"title\":\"Main lobe deceptive jamming suppression based on blind source separation and energy detection for monopulse radar\",\"authors\":\"Zhenhua Liu, Wei Liang, Ning Fu, Liyan Qiao, Jun Zhang\",\"doi\":\"10.1049/rsn2.12644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Main lobe deceptive jamming always causes the serious degradation of signal detection ability and angle measurement precision of monopulse radar. In recent years, the Blind Source Separation (BSS) method has been adopted to suppress the main lobe jamming. However, the separation results of BSS have the problem of amplitude ambiguity, which will cause the radar using monopulse angle measurement fail to measure the angle parameters after jamming suppression. To tackle this problem, a novel main lobe jamming suppression method is proposed based on BSS and energy detection. Firstly, the models of target echoes and jamming in the sum and difference beam receiving channels are derived. Secondly, the target echoes and interferences are separated by the Joint Approximate Diagonalisation of Eigenmatrices (JADE) algorithm, and then the unperturbed signal segments in the mixed signal are extracted by energy detection, thereby obtaining the precise ratio of the sum and difference channels to complete the angle measurement. Performance of the method was verified by numerical simulation. The results show that the proposed method can achieve interference suppression while accurately estimating the angle parameter of the target.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 11\",\"pages\":\"2170-2181\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12644\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12644\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12644","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Main lobe deceptive jamming suppression based on blind source separation and energy detection for monopulse radar
Main lobe deceptive jamming always causes the serious degradation of signal detection ability and angle measurement precision of monopulse radar. In recent years, the Blind Source Separation (BSS) method has been adopted to suppress the main lobe jamming. However, the separation results of BSS have the problem of amplitude ambiguity, which will cause the radar using monopulse angle measurement fail to measure the angle parameters after jamming suppression. To tackle this problem, a novel main lobe jamming suppression method is proposed based on BSS and energy detection. Firstly, the models of target echoes and jamming in the sum and difference beam receiving channels are derived. Secondly, the target echoes and interferences are separated by the Joint Approximate Diagonalisation of Eigenmatrices (JADE) algorithm, and then the unperturbed signal segments in the mixed signal are extracted by energy detection, thereby obtaining the precise ratio of the sum and difference channels to complete the angle measurement. Performance of the method was verified by numerical simulation. The results show that the proposed method can achieve interference suppression while accurately estimating the angle parameter of the target.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.