{"title":"低压配电网边缘计算中基于轻量级AI的分布式光伏短期功率预测模型","authors":"Yuanliang Fan, Han Wu, Jianli Lin, Zewen Li, Lingfei Li, Xinghua Huang, Weiming Chen, Jian Zhao","doi":"10.1049/rpg2.13093","DOIUrl":null,"url":null,"abstract":"<p>Recent years, the tremendous number of distributed photovoltaic are integrated into low-voltage distribution network, generating a significant amount of operational data. The centralized cloud data centre is unable to process the massive data precisely and promptly. Therefore, the operational status of distributed photovoltaic systems in low-voltage distribution network becomes difficult to predict. However, edge computing in the distribution network enable local processing of data to improve the real-time and reliability of the forecasting service. In this regard, this paper proposes a distributed photovoltaic short-term power forecasting model based on lightweight AI algorithms. Firstly, based on the Pearson correlation coefficient method, an analysis is conducted on the historical operational data in the network to extract important meteorological features that are correlated with the photovoltaic power output. Secondly, a distributed photovoltaic power forecasting model for the distribution network is constructed based on the Xception and attention mechanism. Finally, the model is trained using pruning, which involves removing redundant parts of the model, resulting in a compact and efficient forecasting model. By conducting validation on real-world datasets, the results demonstrate that the model presented in this article possesses a smaller size and higher forecasting accuracy compared to other state-of-the-art forecasting models.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 16","pages":"3955-3966"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13093","citationCount":"0","resultStr":"{\"title\":\"A distributed photovoltaic short-term power forecasting model based on lightweight AI for edge computing in low-voltage distribution network\",\"authors\":\"Yuanliang Fan, Han Wu, Jianli Lin, Zewen Li, Lingfei Li, Xinghua Huang, Weiming Chen, Jian Zhao\",\"doi\":\"10.1049/rpg2.13093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent years, the tremendous number of distributed photovoltaic are integrated into low-voltage distribution network, generating a significant amount of operational data. The centralized cloud data centre is unable to process the massive data precisely and promptly. Therefore, the operational status of distributed photovoltaic systems in low-voltage distribution network becomes difficult to predict. However, edge computing in the distribution network enable local processing of data to improve the real-time and reliability of the forecasting service. In this regard, this paper proposes a distributed photovoltaic short-term power forecasting model based on lightweight AI algorithms. Firstly, based on the Pearson correlation coefficient method, an analysis is conducted on the historical operational data in the network to extract important meteorological features that are correlated with the photovoltaic power output. Secondly, a distributed photovoltaic power forecasting model for the distribution network is constructed based on the Xception and attention mechanism. Finally, the model is trained using pruning, which involves removing redundant parts of the model, resulting in a compact and efficient forecasting model. By conducting validation on real-world datasets, the results demonstrate that the model presented in this article possesses a smaller size and higher forecasting accuracy compared to other state-of-the-art forecasting models.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 16\",\"pages\":\"3955-3966\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13093\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13093","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A distributed photovoltaic short-term power forecasting model based on lightweight AI for edge computing in low-voltage distribution network
Recent years, the tremendous number of distributed photovoltaic are integrated into low-voltage distribution network, generating a significant amount of operational data. The centralized cloud data centre is unable to process the massive data precisely and promptly. Therefore, the operational status of distributed photovoltaic systems in low-voltage distribution network becomes difficult to predict. However, edge computing in the distribution network enable local processing of data to improve the real-time and reliability of the forecasting service. In this regard, this paper proposes a distributed photovoltaic short-term power forecasting model based on lightweight AI algorithms. Firstly, based on the Pearson correlation coefficient method, an analysis is conducted on the historical operational data in the network to extract important meteorological features that are correlated with the photovoltaic power output. Secondly, a distributed photovoltaic power forecasting model for the distribution network is constructed based on the Xception and attention mechanism. Finally, the model is trained using pruning, which involves removing redundant parts of the model, resulting in a compact and efficient forecasting model. By conducting validation on real-world datasets, the results demonstrate that the model presented in this article possesses a smaller size and higher forecasting accuracy compared to other state-of-the-art forecasting models.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf