聚乙二醇基CRABP I蛋白的再折叠动力学调节

IF 3.2 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2024-12-02 DOI:10.1002/bio.4924
Suchismita Subadini, Krishnendu Bera, Devi Prasanna Behera, Jozef Hritz, Harekrushna Sahoo
{"title":"聚乙二醇基CRABP I蛋白的再折叠动力学调节","authors":"Suchismita Subadini,&nbsp;Krishnendu Bera,&nbsp;Devi Prasanna Behera,&nbsp;Jozef Hritz,&nbsp;Harekrushna Sahoo","doi":"10.1002/bio.4924","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Crowding environment has a significant impact on the folding and stability of protein in biological systems. In this work, we have used four different sizes of a molecular crowder, polyethylene glycol (PEG), to analyze the unfolding and refolding kinetics of an iLBP protein, CRABP I, using urea as chemical denaturant. In general, the stability of the native state of the protein is boosted by the presence of crowding agents in the solution. However, our findings show that not only the type of crowder but also the crowder size played a key role in the effects of excluded volume. In case of lower molecular weight of PEG (M.W. 400), even at 200 g/L concentration, only the viscosity effect is observed, whereas for higher molecular weight of PEG (M.W. 1000), both the viscosity effect and excluded volume effect are noticed, and even at a higher concentration (200 g/L) of PEG 1000, the excluded volume predominates over the viscosity effect. Using the transition state theory, we were also able to determine the free energies of activation for the unfolding and refolding studies from their respective rate constants. Additionally, MD simulation studies provide strong support for our experimental observation. Analysis of secondary structure propensity (SSP) reveals a marked decline in the presence of structural elements (<i>β</i>-sheet, <i>β</i>-bridge, turn, and <i>α</i>-helix) from 81% to 43% over the 1 μs time scale unfolding MD simulation under 8 M urea conditions. Conversely, in a 200 ns refolding simulation, the rate of refolding notably increases at a concentration of 200 g/L PEG 1000.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethylene Glycol-Based Refolding Kinetic Modulation of CRABP I Protein\",\"authors\":\"Suchismita Subadini,&nbsp;Krishnendu Bera,&nbsp;Devi Prasanna Behera,&nbsp;Jozef Hritz,&nbsp;Harekrushna Sahoo\",\"doi\":\"10.1002/bio.4924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Crowding environment has a significant impact on the folding and stability of protein in biological systems. In this work, we have used four different sizes of a molecular crowder, polyethylene glycol (PEG), to analyze the unfolding and refolding kinetics of an iLBP protein, CRABP I, using urea as chemical denaturant. In general, the stability of the native state of the protein is boosted by the presence of crowding agents in the solution. However, our findings show that not only the type of crowder but also the crowder size played a key role in the effects of excluded volume. In case of lower molecular weight of PEG (M.W. 400), even at 200 g/L concentration, only the viscosity effect is observed, whereas for higher molecular weight of PEG (M.W. 1000), both the viscosity effect and excluded volume effect are noticed, and even at a higher concentration (200 g/L) of PEG 1000, the excluded volume predominates over the viscosity effect. Using the transition state theory, we were also able to determine the free energies of activation for the unfolding and refolding studies from their respective rate constants. Additionally, MD simulation studies provide strong support for our experimental observation. Analysis of secondary structure propensity (SSP) reveals a marked decline in the presence of structural elements (<i>β</i>-sheet, <i>β</i>-bridge, turn, and <i>α</i>-helix) from 81% to 43% over the 1 μs time scale unfolding MD simulation under 8 M urea conditions. Conversely, in a 200 ns refolding simulation, the rate of refolding notably increases at a concentration of 200 g/L PEG 1000.</p>\\n </div>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"39 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.4924\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.4924","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

拥挤环境对生物系统中蛋白质的折叠和稳定性有重要影响。在这项工作中,我们使用了四种不同大小的分子聚乙二醇(PEG),以尿素作为化学变性剂,分析了iLBP蛋白CRABP I的展开和再折叠动力学。一般来说,溶液中拥挤剂的存在提高了蛋白质天然状态的稳定性。然而,我们的研究结果表明,在排除体积的影响中,除了人群的类型,人群的大小也起着关键作用。当PEG分子量较低(m.w.400)时,即使在200 g/L浓度下,也只观察到粘度效应,而当PEG分子量较高(m.w.1000)时,粘度效应和排除体积效应都被注意到,即使在较高浓度(200 g/L)的PEG 1000下,排除体积效应也大于粘度效应。利用过渡态理论,我们还能够从展开和折叠的速率常数中确定它们的激活自由能。此外,MD模拟研究为我们的实验观察提供了有力的支持。二级结构倾向(SSP)分析表明,在8 M尿素条件下,在1 μs时间尺度展开MD模拟时,结构元素(β-sheet、β-bridge、turn和α-helix)的存在率从81%下降到43%。相反,在200 ns的再折叠模拟中,当浓度为200 g/L PEG 1000时,再折叠速率显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyethylene Glycol-Based Refolding Kinetic Modulation of CRABP I Protein

Polyethylene Glycol-Based Refolding Kinetic Modulation of CRABP I Protein

Crowding environment has a significant impact on the folding and stability of protein in biological systems. In this work, we have used four different sizes of a molecular crowder, polyethylene glycol (PEG), to analyze the unfolding and refolding kinetics of an iLBP protein, CRABP I, using urea as chemical denaturant. In general, the stability of the native state of the protein is boosted by the presence of crowding agents in the solution. However, our findings show that not only the type of crowder but also the crowder size played a key role in the effects of excluded volume. In case of lower molecular weight of PEG (M.W. 400), even at 200 g/L concentration, only the viscosity effect is observed, whereas for higher molecular weight of PEG (M.W. 1000), both the viscosity effect and excluded volume effect are noticed, and even at a higher concentration (200 g/L) of PEG 1000, the excluded volume predominates over the viscosity effect. Using the transition state theory, we were also able to determine the free energies of activation for the unfolding and refolding studies from their respective rate constants. Additionally, MD simulation studies provide strong support for our experimental observation. Analysis of secondary structure propensity (SSP) reveals a marked decline in the presence of structural elements (β-sheet, β-bridge, turn, and α-helix) from 81% to 43% over the 1 μs time scale unfolding MD simulation under 8 M urea conditions. Conversely, in a 200 ns refolding simulation, the rate of refolding notably increases at a concentration of 200 g/L PEG 1000.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信