{"title":"核壳非晶FePO4作为锂离子和钠离子电池正极材料","authors":"Peng Tang, John Prochest Kachenje, Xiaoping Qin, Huihui Li, Xiangdong Zeng, Haiyang Tian, Wei Cao, Ying Zhou, Di Heng, Shishi Yuan, Xun Jia, Xiaolong Zhang, Xiaoyu Zhao","doi":"10.1002/celc.202400484","DOIUrl":null,"url":null,"abstract":"<p>Amorphous FePO<sub>4</sub> (AFP) is a promising cathode material for lithium-ion and sodium-ion batteries (LIBs & SIBs) due to its stability, high theoretical capacity, and cost-effective processing. However, challenges such as low electronic conductivity and volumetric changes seriously hinder its practical application. To overcome these hurdles, core-shell structure synthesis emerges as a useful solution. In this work, we for the first time made this comprehensive review on the progresses of core-shell amorphous FePO<sub>4</sub> (CS-AFP). This review summarizes 1) various synthesis methods such as template method, microemulsion method, and other methods, 2) characterization techniques, and 3) their involvement in improving electrochemical performance in LIBs and SIBs. In terms of further understanding the underlying mechanisms of advancing electrochemical performance of CS-AFP, the future perspective on two main aspects were insighted: (i) in situ characterization and (ii) novel designs of materials and structure for CS-AFP.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 23","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400484","citationCount":"0","resultStr":"{\"title\":\"Core-Shell Amorphous FePO4 as Cathode Material for Lithium-Ion and Sodium-Ion Batteries\",\"authors\":\"Peng Tang, John Prochest Kachenje, Xiaoping Qin, Huihui Li, Xiangdong Zeng, Haiyang Tian, Wei Cao, Ying Zhou, Di Heng, Shishi Yuan, Xun Jia, Xiaolong Zhang, Xiaoyu Zhao\",\"doi\":\"10.1002/celc.202400484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amorphous FePO<sub>4</sub> (AFP) is a promising cathode material for lithium-ion and sodium-ion batteries (LIBs & SIBs) due to its stability, high theoretical capacity, and cost-effective processing. However, challenges such as low electronic conductivity and volumetric changes seriously hinder its practical application. To overcome these hurdles, core-shell structure synthesis emerges as a useful solution. In this work, we for the first time made this comprehensive review on the progresses of core-shell amorphous FePO<sub>4</sub> (CS-AFP). This review summarizes 1) various synthesis methods such as template method, microemulsion method, and other methods, 2) characterization techniques, and 3) their involvement in improving electrochemical performance in LIBs and SIBs. In terms of further understanding the underlying mechanisms of advancing electrochemical performance of CS-AFP, the future perspective on two main aspects were insighted: (i) in situ characterization and (ii) novel designs of materials and structure for CS-AFP.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 23\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400484\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400484\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400484","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Core-Shell Amorphous FePO4 as Cathode Material for Lithium-Ion and Sodium-Ion Batteries
Amorphous FePO4 (AFP) is a promising cathode material for lithium-ion and sodium-ion batteries (LIBs & SIBs) due to its stability, high theoretical capacity, and cost-effective processing. However, challenges such as low electronic conductivity and volumetric changes seriously hinder its practical application. To overcome these hurdles, core-shell structure synthesis emerges as a useful solution. In this work, we for the first time made this comprehensive review on the progresses of core-shell amorphous FePO4 (CS-AFP). This review summarizes 1) various synthesis methods such as template method, microemulsion method, and other methods, 2) characterization techniques, and 3) their involvement in improving electrochemical performance in LIBs and SIBs. In terms of further understanding the underlying mechanisms of advancing electrochemical performance of CS-AFP, the future perspective on two main aspects were insighted: (i) in situ characterization and (ii) novel designs of materials and structure for CS-AFP.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.