孟加拉国达卡主要废物处理环境中微塑料的分布模式和生态风险

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Priyanka Dey Suchi, Badhan Saha, Mohammad Moniruzzaman, Trisha Paul, Kowshik Das Karmaker, Md. Kamal Hossain, Afroza Parvin, Afsana Parvin
{"title":"孟加拉国达卡主要废物处理环境中微塑料的分布模式和生态风险","authors":"Priyanka Dey Suchi,&nbsp;Badhan Saha,&nbsp;Mohammad Moniruzzaman,&nbsp;Trisha Paul,&nbsp;Kowshik Das Karmaker,&nbsp;Md. Kamal Hossain,&nbsp;Afroza Parvin,&nbsp;Afsana Parvin","doi":"10.1007/s11270-024-07664-7","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs), recently identified as emerging contaminants in environmental and biological systems, currently lack a comprehensive ecological risk assessment in waste disposal environments. This study investigates the presence, abundance, and distribution patterns of MPs in agricultural soils and surface water near the largest waste disposal area in Dhaka, Bangladesh, mainly focusing on assessing ecological risks and identifying potential hazards. MPs were characterized using ATR-FTIR spectroscopy, stereomicroscopy, and SEM–EDX analysis. The agricultural soils were categorized into 5–2 mm, 2–1 mm, and 1–0.5 mm size fractions, concentrating on MPs less than 5 mm in surface waters. The mean abundance of MPs in surface soils was 2800 ± 696.42, 2320 ± 622.09, and 2040 ± 313.05 particles/kg, while in subsurface soil they were 2680 ± 576.19, 2200 ± 570.09, and 1760 ± 443.72 particles/kg for respective size fractions, and 376 ± 57.29 particles/liter in surface water. MPs were significantly correlated with soil moisture, pH, electrical conductivity, organic matter, nitrogen, and phosphorus. The predominant polymers were polyethylene, polypropylene, and polystyrene, mainly in fiber and film forms. The ecological risk evaluation indicated a high risk for surface soil and a medium-to-high risk for subsurface soil of agricultural land and surface water. Plastic mulch, solid waste, surface water irrigation, and organic compost were probably the potential sources of MPs, and their entrance into farmland and adjacent environments should be strictly limited. This study would provide the baseline reference for the current situation on agricultural fields and surface water near waste dumping sites, as well as emphasize the need for strong environmental regulations and effective mitigation techniques to address microplastic pollution.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution Patterns and Ecological Risks of Microplastics at Major Waste Disposal Environments in Dhaka, Bangladesh\",\"authors\":\"Priyanka Dey Suchi,&nbsp;Badhan Saha,&nbsp;Mohammad Moniruzzaman,&nbsp;Trisha Paul,&nbsp;Kowshik Das Karmaker,&nbsp;Md. Kamal Hossain,&nbsp;Afroza Parvin,&nbsp;Afsana Parvin\",\"doi\":\"10.1007/s11270-024-07664-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics (MPs), recently identified as emerging contaminants in environmental and biological systems, currently lack a comprehensive ecological risk assessment in waste disposal environments. This study investigates the presence, abundance, and distribution patterns of MPs in agricultural soils and surface water near the largest waste disposal area in Dhaka, Bangladesh, mainly focusing on assessing ecological risks and identifying potential hazards. MPs were characterized using ATR-FTIR spectroscopy, stereomicroscopy, and SEM–EDX analysis. The agricultural soils were categorized into 5–2 mm, 2–1 mm, and 1–0.5 mm size fractions, concentrating on MPs less than 5 mm in surface waters. The mean abundance of MPs in surface soils was 2800 ± 696.42, 2320 ± 622.09, and 2040 ± 313.05 particles/kg, while in subsurface soil they were 2680 ± 576.19, 2200 ± 570.09, and 1760 ± 443.72 particles/kg for respective size fractions, and 376 ± 57.29 particles/liter in surface water. MPs were significantly correlated with soil moisture, pH, electrical conductivity, organic matter, nitrogen, and phosphorus. The predominant polymers were polyethylene, polypropylene, and polystyrene, mainly in fiber and film forms. The ecological risk evaluation indicated a high risk for surface soil and a medium-to-high risk for subsurface soil of agricultural land and surface water. Plastic mulch, solid waste, surface water irrigation, and organic compost were probably the potential sources of MPs, and their entrance into farmland and adjacent environments should be strictly limited. This study would provide the baseline reference for the current situation on agricultural fields and surface water near waste dumping sites, as well as emphasize the need for strong environmental regulations and effective mitigation techniques to address microplastic pollution.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07664-7\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07664-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(MPs)最近被确定为环境和生物系统中的新污染物,目前在废物处理环境中缺乏全面的生态风险评估。本研究调查了孟加拉国达卡最大的废物处理区附近农业土壤和地表水中MPs的存在、丰度和分布模式,主要侧重于评估生态风险和识别潜在危害。通过ATR-FTIR光谱、体视显微镜和SEM-EDX分析对MPs进行了表征。农业土壤被划分为5 - 2 mm、2-1 mm和1-0.5 mm三个粒径组,主要集中在表层水中小于5 mm的MPs。表层土壤中MPs的平均丰度分别为2800±696.42、2320±622.09和2040±313.05粒/kg,地下土壤中各粒径组MPs的平均丰度分别为2680±576.19、2200±570.09和1760±443.72粒/kg,地表水中MPs的平均丰度分别为376±57.29粒/kg。MPs与土壤水分、pH、电导率、有机质、氮、磷呈极显著相关。主要的聚合物是聚乙烯、聚丙烯和聚苯乙烯,主要以纤维和薄膜形式存在。农业用地表层土壤和地表水的生态风险等级为高,地下土壤和地表水的生态风险等级为中高。地膜覆盖、固体废弃物、地表水灌溉和有机堆肥可能是MPs的潜在来源,应严格限制其进入农田和邻近环境。该研究将为农田和垃圾场附近地表水的现状提供基线参考,并强调需要制定强有力的环境法规和有效的缓解技术来解决微塑料污染问题。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Patterns and Ecological Risks of Microplastics at Major Waste Disposal Environments in Dhaka, Bangladesh

Microplastics (MPs), recently identified as emerging contaminants in environmental and biological systems, currently lack a comprehensive ecological risk assessment in waste disposal environments. This study investigates the presence, abundance, and distribution patterns of MPs in agricultural soils and surface water near the largest waste disposal area in Dhaka, Bangladesh, mainly focusing on assessing ecological risks and identifying potential hazards. MPs were characterized using ATR-FTIR spectroscopy, stereomicroscopy, and SEM–EDX analysis. The agricultural soils were categorized into 5–2 mm, 2–1 mm, and 1–0.5 mm size fractions, concentrating on MPs less than 5 mm in surface waters. The mean abundance of MPs in surface soils was 2800 ± 696.42, 2320 ± 622.09, and 2040 ± 313.05 particles/kg, while in subsurface soil they were 2680 ± 576.19, 2200 ± 570.09, and 1760 ± 443.72 particles/kg for respective size fractions, and 376 ± 57.29 particles/liter in surface water. MPs were significantly correlated with soil moisture, pH, electrical conductivity, organic matter, nitrogen, and phosphorus. The predominant polymers were polyethylene, polypropylene, and polystyrene, mainly in fiber and film forms. The ecological risk evaluation indicated a high risk for surface soil and a medium-to-high risk for subsurface soil of agricultural land and surface water. Plastic mulch, solid waste, surface water irrigation, and organic compost were probably the potential sources of MPs, and their entrance into farmland and adjacent environments should be strictly limited. This study would provide the baseline reference for the current situation on agricultural fields and surface water near waste dumping sites, as well as emphasize the need for strong environmental regulations and effective mitigation techniques to address microplastic pollution.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信