{"title":"反转基本图和预测边界条件:机器学习如何改善交通流的宏观模型","authors":"Maya Briani, Emiliano Cristiani, Elia Onofri","doi":"10.1007/s10444-024-10206-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow\",\"authors\":\"Maya Briani, Emiliano Cristiani, Elia Onofri\",\"doi\":\"10.1007/s10444-024-10206-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10206-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10206-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow
In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.