反转基本图和预测边界条件:机器学习如何改善交通流的宏观模型

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Maya Briani, Emiliano Cristiani, Elia Onofri
{"title":"反转基本图和预测边界条件:机器学习如何改善交通流的宏观模型","authors":"Maya Briani,&nbsp;Emiliano Cristiani,&nbsp;Elia Onofri","doi":"10.1007/s10444-024-10206-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow\",\"authors\":\"Maya Briani,&nbsp;Emiliano Cristiani,&nbsp;Elia Onofri\",\"doi\":\"10.1007/s10444-024-10206-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10206-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10206-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了新的方法来结合机器学习技术和宏观微分模型,旨在估计和预测车辆交通。这样做是为了补充数据驱动和模型驱动方法各自的优势。我们在这里考虑一个数据集,其中包含高速公路上行驶的车辆的流量和速度数据,由固定传感器收集,并按车道和车辆类别分类。通过基于LSTM递归神经网络的机器学习模型,我们推断出两个重要的信息:(1)传感器下是否出现拥堵,以及(2)下一个未来(30分钟)将通过传感器下的车辆总量。然后使用这些信息片段来提高基于lhr的一阶多类模型的准确性,该模型描述了传感器之间的交通流动态。利用第一段信息反演(凹)基本图,从而从通量数据中恢复车辆密度,然后直接将密度基准注入模型。这使得人们可以更好地近似传感器之间的动态,特别是如果事故/瓶颈发生在不受监控的路段。第二部分信息被用作交通模型基础方程的边界条件,以便更好地预测未来任何时间道路上的车辆总量。我们将讨论一些基于真实场景的例子。真实数据由意大利高速公路公司Autovie Venete S.p.A提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow

In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信