{"title":"高温下GFRP-RC柱的冲击性能和损伤评估:数值分析","authors":"Liu Jin, Xi Li, Renbo Zhang, Xiuli Du","doi":"10.1007/s43452-024-01100-7","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber-reinforced polymer (FRP) bars have better resistance to corrosion and higher tensile strength than steel bars, thus being a prospective material for concrete structures in marine engineering. However, it is less fire-resistant, and the residual bearing capacity of FRP-reinforced concrete members after the fire needs to be clarified. This study explores the impact resistance of Glass FRP-reinforced concrete (GFRP-RC) columns at high temperatures using finite element models. To assess the accuracy of the model, the simulation results were compared with the test results in terms of fire resistance and impact resistance, respectively. Based on these, the impact behavior of GFRP-RC and steel-RC columns were compared and analyzed. The results show that GFRP-RC columns were more severely damaged by impact loading after high temperatures than steel-RC columns. The peak impact forces of the GFRP-RC columns and steel-RC columns are nearly identical. However, the former has a smaller reaction force and a more significant mid-span displacement. Furthermore, the residual axial bearing capacity of GFRP-RC columns after high temperature and impact loading is significantly reduced compared to steel-RC columns. Exposure to high temperatures takes a more significant proportion in the reduction than impact loading. In addition, a relationship between the damage index (based on residual bearing capacity) and the lateral displacement of the columns after fire and impact loadings was established. In contrast, the corresponding damage classification criteria were determined.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact performance and damage assessment of GFRP-RC columns at high temperatures: a numerical insight\",\"authors\":\"Liu Jin, Xi Li, Renbo Zhang, Xiuli Du\",\"doi\":\"10.1007/s43452-024-01100-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fiber-reinforced polymer (FRP) bars have better resistance to corrosion and higher tensile strength than steel bars, thus being a prospective material for concrete structures in marine engineering. However, it is less fire-resistant, and the residual bearing capacity of FRP-reinforced concrete members after the fire needs to be clarified. This study explores the impact resistance of Glass FRP-reinforced concrete (GFRP-RC) columns at high temperatures using finite element models. To assess the accuracy of the model, the simulation results were compared with the test results in terms of fire resistance and impact resistance, respectively. Based on these, the impact behavior of GFRP-RC and steel-RC columns were compared and analyzed. The results show that GFRP-RC columns were more severely damaged by impact loading after high temperatures than steel-RC columns. The peak impact forces of the GFRP-RC columns and steel-RC columns are nearly identical. However, the former has a smaller reaction force and a more significant mid-span displacement. Furthermore, the residual axial bearing capacity of GFRP-RC columns after high temperature and impact loading is significantly reduced compared to steel-RC columns. Exposure to high temperatures takes a more significant proportion in the reduction than impact loading. In addition, a relationship between the damage index (based on residual bearing capacity) and the lateral displacement of the columns after fire and impact loadings was established. In contrast, the corresponding damage classification criteria were determined.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01100-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01100-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Impact performance and damage assessment of GFRP-RC columns at high temperatures: a numerical insight
Fiber-reinforced polymer (FRP) bars have better resistance to corrosion and higher tensile strength than steel bars, thus being a prospective material for concrete structures in marine engineering. However, it is less fire-resistant, and the residual bearing capacity of FRP-reinforced concrete members after the fire needs to be clarified. This study explores the impact resistance of Glass FRP-reinforced concrete (GFRP-RC) columns at high temperatures using finite element models. To assess the accuracy of the model, the simulation results were compared with the test results in terms of fire resistance and impact resistance, respectively. Based on these, the impact behavior of GFRP-RC and steel-RC columns were compared and analyzed. The results show that GFRP-RC columns were more severely damaged by impact loading after high temperatures than steel-RC columns. The peak impact forces of the GFRP-RC columns and steel-RC columns are nearly identical. However, the former has a smaller reaction force and a more significant mid-span displacement. Furthermore, the residual axial bearing capacity of GFRP-RC columns after high temperature and impact loading is significantly reduced compared to steel-RC columns. Exposure to high temperatures takes a more significant proportion in the reduction than impact loading. In addition, a relationship between the damage index (based on residual bearing capacity) and the lateral displacement of the columns after fire and impact loadings was established. In contrast, the corresponding damage classification criteria were determined.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.