Jingjing Gui, Wenbing Shi, Lei Zhou, Xiongwu Peng, Shunbo Zhang
{"title":"暴雨作用下贵州关岭滑坡形成机制","authors":"Jingjing Gui, Wenbing Shi, Lei Zhou, Xiongwu Peng, Shunbo Zhang","doi":"10.1007/s12665-024-11993-5","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout history of geology, multistage tectonic action has caused mountain folds and faults, but it is difficult to identify faults on the surface due to weathering and erosion during later periods. Under the action of rainfall, rock mass parts are prone to collapse and slide disasters controlled by fault planes. This study investigates the formation mechanism and dynamic process of the landslide by integrating field geological surveys with discrete element numerical simulations. The results highlight that the buried reverse fault in the landslide’s source area acts as a dominant infiltration zone, which significantly contributes to the instability of the slope. Rainwater seepage into the fault zone weakened the rock mass, resulting in its progressive failure. The investigation reveals that the landslide’s instability process can be divided into four key stages: fault development, rainfall infiltration, sliding surface formation, and eventual collapse. The discrete element simulation further confirmed that the rainwater infiltration along the fault zone reduced the shear resistance of the rock mass, leading to large-scale sliding and compressional fracturing. This sliding-compressional fracturing mechanism is identified as the primary cause of the Guanling landslide. The findings of this study offer new insights into the role of buried faults in landslide formation, especially under extreme weather conditions. The research conclusions contribute to the understanding of landslide behavior in fault-affected mountainous areas and provide a scientific basis for early identification, hazard prevention, and mitigation strategies in similar geologically complex regions.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation mechanism of the Guanling landslide under the action of heavy rain in Guizhou, China\",\"authors\":\"Jingjing Gui, Wenbing Shi, Lei Zhou, Xiongwu Peng, Shunbo Zhang\",\"doi\":\"10.1007/s12665-024-11993-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Throughout history of geology, multistage tectonic action has caused mountain folds and faults, but it is difficult to identify faults on the surface due to weathering and erosion during later periods. Under the action of rainfall, rock mass parts are prone to collapse and slide disasters controlled by fault planes. This study investigates the formation mechanism and dynamic process of the landslide by integrating field geological surveys with discrete element numerical simulations. The results highlight that the buried reverse fault in the landslide’s source area acts as a dominant infiltration zone, which significantly contributes to the instability of the slope. Rainwater seepage into the fault zone weakened the rock mass, resulting in its progressive failure. The investigation reveals that the landslide’s instability process can be divided into four key stages: fault development, rainfall infiltration, sliding surface formation, and eventual collapse. The discrete element simulation further confirmed that the rainwater infiltration along the fault zone reduced the shear resistance of the rock mass, leading to large-scale sliding and compressional fracturing. This sliding-compressional fracturing mechanism is identified as the primary cause of the Guanling landslide. The findings of this study offer new insights into the role of buried faults in landslide formation, especially under extreme weather conditions. The research conclusions contribute to the understanding of landslide behavior in fault-affected mountainous areas and provide a scientific basis for early identification, hazard prevention, and mitigation strategies in similar geologically complex regions.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"83 24\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11993-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11993-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Formation mechanism of the Guanling landslide under the action of heavy rain in Guizhou, China
Throughout history of geology, multistage tectonic action has caused mountain folds and faults, but it is difficult to identify faults on the surface due to weathering and erosion during later periods. Under the action of rainfall, rock mass parts are prone to collapse and slide disasters controlled by fault planes. This study investigates the formation mechanism and dynamic process of the landslide by integrating field geological surveys with discrete element numerical simulations. The results highlight that the buried reverse fault in the landslide’s source area acts as a dominant infiltration zone, which significantly contributes to the instability of the slope. Rainwater seepage into the fault zone weakened the rock mass, resulting in its progressive failure. The investigation reveals that the landslide’s instability process can be divided into four key stages: fault development, rainfall infiltration, sliding surface formation, and eventual collapse. The discrete element simulation further confirmed that the rainwater infiltration along the fault zone reduced the shear resistance of the rock mass, leading to large-scale sliding and compressional fracturing. This sliding-compressional fracturing mechanism is identified as the primary cause of the Guanling landslide. The findings of this study offer new insights into the role of buried faults in landslide formation, especially under extreme weather conditions. The research conclusions contribute to the understanding of landslide behavior in fault-affected mountainous areas and provide a scientific basis for early identification, hazard prevention, and mitigation strategies in similar geologically complex regions.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.