Kugalur Shanmugam Ranjith, Ali Mohammadi, Ganji Seeta Rama Raju, Yun Suk Huh, Young-Kyu Han
{"title":"MXene/MoS2在CdS纳米球层状协同壳壁上的界面电荷转移:可见光响应光催化析氢的异质结构完整性","authors":"Kugalur Shanmugam Ranjith, Ali Mohammadi, Ganji Seeta Rama Raju, Yun Suk Huh, Young-Kyu Han","doi":"10.1186/s40580-024-00454-1","DOIUrl":null,"url":null,"abstract":"<div><p>Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS<sub>2</sub> nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS<sub>2</sub> nanoflakes as a core–shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H<sub>2</sub> (38.5 mmol g<sup>−1</sup> h<sup>−1</sup>), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS–MXe, and CdS–MoS<sub>2</sub> nanostructures, respectively. The apparent quantum efficiency of the CdS–MXe<sub>2.4</sub>/MoS<sub>2</sub> heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS<sub>2</sub> heterostructure. The dual surface wrapping of MXe/MoS<sub>2</sub> over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00454-1","citationCount":"0","resultStr":"{\"title\":\"Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution\",\"authors\":\"Kugalur Shanmugam Ranjith, Ali Mohammadi, Ganji Seeta Rama Raju, Yun Suk Huh, Young-Kyu Han\",\"doi\":\"10.1186/s40580-024-00454-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS<sub>2</sub> nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS<sub>2</sub> nanoflakes as a core–shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H<sub>2</sub> (38.5 mmol g<sup>−1</sup> h<sup>−1</sup>), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS–MXe, and CdS–MoS<sub>2</sub> nanostructures, respectively. The apparent quantum efficiency of the CdS–MXe<sub>2.4</sub>/MoS<sub>2</sub> heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS<sub>2</sub> heterostructure. The dual surface wrapping of MXe/MoS<sub>2</sub> over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00454-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-024-00454-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00454-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution
Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS2 nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS2 nanoflakes as a core–shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H2 (38.5 mmol g−1 h−1), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS–MXe, and CdS–MoS2 nanostructures, respectively. The apparent quantum efficiency of the CdS–MXe2.4/MoS2 heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS2 heterostructure. The dual surface wrapping of MXe/MoS2 over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.