药用植物提取物生物辅助合成具有抗菌活性的Ag/AgCl纳米颗粒

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Jorge Luis Torres-López, Stephania Lázaro-Mass, Susana De la Rosa-García, Mayra A. Alvarez-Lemus, Abraham Gómez-Rivera, Rosendo López-González, Carlos Ernesto Lobato-García, Getsemani Morales-Mendoza, Sergio Gómez-Cornelio
{"title":"药用植物提取物生物辅助合成具有抗菌活性的Ag/AgCl纳米颗粒","authors":"Jorge Luis Torres-López,&nbsp;Stephania Lázaro-Mass,&nbsp;Susana De la Rosa-García,&nbsp;Mayra A. Alvarez-Lemus,&nbsp;Abraham Gómez-Rivera,&nbsp;Rosendo López-González,&nbsp;Carlos Ernesto Lobato-García,&nbsp;Getsemani Morales-Mendoza,&nbsp;Sergio Gómez-Cornelio","doi":"10.1007/s10876-024-02722-w","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing antibiotic resistance necessitates sustainable methods for synthesizing antibacterial nanoparticles. This study focuses on the bio-assisted synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using aqueous extracts of <i>Acalypha arvensis</i>, <i>Hampea rovirosae</i>, and <i>Inga jinicuil</i>. Polyphenols and flavonoids were quantified, and functional groups were analyzed via Fourier-transform infrared to assess their influence on the properties of Ag/AgCl-NPs. The effects of thermal treatment at 60 and 500 °C on the NPs’ size, morphology, and antibacterial efficacy were assessed. UV–Vis spectroscopy indicated absorption peaks between 430 and 449 nm, while X-ray diffraction analysis confirmed the presence of metallic Ag and a cubic AgCl structure, with crystallite sizes ranging from 11–51 and 28–60 nm, respectively. Dynamic light scattering showed hydrodynamic sizes of up to 127.2 ± 0.9 nm at 60 °C and up to 348.9 ± 10.7 nm at 500 °C. Field emission scanning electron microscopy micrographs exhibited a quasi-spherical morphology with significant agglomeration; showing particle sizes between 55 ± 11 and 81 ± 28 nm at 60 °C, and up to 135 ± 65 nm at 500 °C. X-ray photoelectron spectroscopy confirmed the metallic silver (Ag⁰), organic molecules, and absorbed chlorides on the NP surface. Pearson correlation analysis indicated a strong positive correlation between polyphenol content and NPs yield (r = 0.922), while it indicated a strong negative correlation with flavonoid content (r = −0.996). Additionally, a negative correlation was found between hydrodynamic size and antibacterial activity against <i>Staphylococcus aureus</i> (r = −0.854). The Ag/AgCl-NPs, after drying at 60 and 500 °C, were tested against <i>Escherichia coli</i> and <i>S. aureus</i> with minimum bactericidal concentrations below 19 µg/mL against <i>E. coli</i>. Minimum inhibitory concentration (MIC) for Ag/AgCl-NPs synthesized with <i>A. arvensis</i> and <i>H. rovirosae</i> extracts were above 312 µg/mL for <i>S. aureus</i>, while those synthesized with <i>I. jinicuil</i> showed MIC as low as 156 µg/mL. These results highlight the potential of medicinal plant extracts in the synthesis of Ag/AgCl with enhanced antibacterial properties.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medicinal Plants Extract for the Bio-Assisted Synthesis of Ag/AgCl Nanoparticles with Antibacterial Activity\",\"authors\":\"Jorge Luis Torres-López,&nbsp;Stephania Lázaro-Mass,&nbsp;Susana De la Rosa-García,&nbsp;Mayra A. Alvarez-Lemus,&nbsp;Abraham Gómez-Rivera,&nbsp;Rosendo López-González,&nbsp;Carlos Ernesto Lobato-García,&nbsp;Getsemani Morales-Mendoza,&nbsp;Sergio Gómez-Cornelio\",\"doi\":\"10.1007/s10876-024-02722-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing antibiotic resistance necessitates sustainable methods for synthesizing antibacterial nanoparticles. This study focuses on the bio-assisted synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using aqueous extracts of <i>Acalypha arvensis</i>, <i>Hampea rovirosae</i>, and <i>Inga jinicuil</i>. Polyphenols and flavonoids were quantified, and functional groups were analyzed via Fourier-transform infrared to assess their influence on the properties of Ag/AgCl-NPs. The effects of thermal treatment at 60 and 500 °C on the NPs’ size, morphology, and antibacterial efficacy were assessed. UV–Vis spectroscopy indicated absorption peaks between 430 and 449 nm, while X-ray diffraction analysis confirmed the presence of metallic Ag and a cubic AgCl structure, with crystallite sizes ranging from 11–51 and 28–60 nm, respectively. Dynamic light scattering showed hydrodynamic sizes of up to 127.2 ± 0.9 nm at 60 °C and up to 348.9 ± 10.7 nm at 500 °C. Field emission scanning electron microscopy micrographs exhibited a quasi-spherical morphology with significant agglomeration; showing particle sizes between 55 ± 11 and 81 ± 28 nm at 60 °C, and up to 135 ± 65 nm at 500 °C. X-ray photoelectron spectroscopy confirmed the metallic silver (Ag⁰), organic molecules, and absorbed chlorides on the NP surface. Pearson correlation analysis indicated a strong positive correlation between polyphenol content and NPs yield (r = 0.922), while it indicated a strong negative correlation with flavonoid content (r = −0.996). Additionally, a negative correlation was found between hydrodynamic size and antibacterial activity against <i>Staphylococcus aureus</i> (r = −0.854). The Ag/AgCl-NPs, after drying at 60 and 500 °C, were tested against <i>Escherichia coli</i> and <i>S. aureus</i> with minimum bactericidal concentrations below 19 µg/mL against <i>E. coli</i>. Minimum inhibitory concentration (MIC) for Ag/AgCl-NPs synthesized with <i>A. arvensis</i> and <i>H. rovirosae</i> extracts were above 312 µg/mL for <i>S. aureus</i>, while those synthesized with <i>I. jinicuil</i> showed MIC as low as 156 µg/mL. These results highlight the potential of medicinal plant extracts in the synthesis of Ag/AgCl with enhanced antibacterial properties.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02722-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02722-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性的增加需要可持续的合成抗菌纳米颗粒的方法。本研究主要研究了生物辅助合成银/氯化银纳米颗粒(Ag/AgCl-NPs)的方法。测定了Ag/AgCl-NPs中多酚和黄酮类化合物的含量,并利用傅里叶变换红外光谱分析了其官能团对其性能的影响。研究了60°C和500°C热处理对NPs大小、形态和抗菌效果的影响。紫外可见光谱分析表明,吸收峰在430 ~ 449 nm之间,x射线衍射分析证实了金属Ag和立方AgCl结构的存在,晶粒尺寸分别为11 ~ 51 nm和28 ~ 60 nm。动态光散射显示,在60°C下,流体力学尺寸可达127.2±0.9 nm,在500°C下,流体力学尺寸可达348.9±10.7 nm。场发射扫描电镜图显示出具有明显团聚的准球形形貌;显示颗粒尺寸在55±11和81±28 nm在60°C,并高达135±65 nm在500°C。x射线光电子能谱证实了NP表面上的金属银(Ag⁰)、有机分子和吸收的氯化物。Pearson相关分析表明,多酚含量与NPs产量呈显著正相关(r = 0.922),与黄酮类含量呈显著负相关(r = - 0.996)。此外,水动力尺寸与对金黄色葡萄球菌的抗菌活性呈负相关(r = - 0.854)。在60°C和500°C干燥后,对大肠杆菌和金黄色葡萄球菌进行抑菌试验,对大肠杆菌的最低抑菌浓度低于19µg/mL。金针菇提取物和罗氏病毒提取物合成的Ag/AgCl-NPs对金黄色葡萄球菌的最低抑制浓度(MIC)均在312µg/mL以上,金针菇提取物合成的最低抑制浓度(MIC)为156µg/mL。这些结果突出了药用植物提取物在合成具有增强抗菌性能的Ag/AgCl方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medicinal Plants Extract for the Bio-Assisted Synthesis of Ag/AgCl Nanoparticles with Antibacterial Activity

The increasing antibiotic resistance necessitates sustainable methods for synthesizing antibacterial nanoparticles. This study focuses on the bio-assisted synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using aqueous extracts of Acalypha arvensis, Hampea rovirosae, and Inga jinicuil. Polyphenols and flavonoids were quantified, and functional groups were analyzed via Fourier-transform infrared to assess their influence on the properties of Ag/AgCl-NPs. The effects of thermal treatment at 60 and 500 °C on the NPs’ size, morphology, and antibacterial efficacy were assessed. UV–Vis spectroscopy indicated absorption peaks between 430 and 449 nm, while X-ray diffraction analysis confirmed the presence of metallic Ag and a cubic AgCl structure, with crystallite sizes ranging from 11–51 and 28–60 nm, respectively. Dynamic light scattering showed hydrodynamic sizes of up to 127.2 ± 0.9 nm at 60 °C and up to 348.9 ± 10.7 nm at 500 °C. Field emission scanning electron microscopy micrographs exhibited a quasi-spherical morphology with significant agglomeration; showing particle sizes between 55 ± 11 and 81 ± 28 nm at 60 °C, and up to 135 ± 65 nm at 500 °C. X-ray photoelectron spectroscopy confirmed the metallic silver (Ag⁰), organic molecules, and absorbed chlorides on the NP surface. Pearson correlation analysis indicated a strong positive correlation between polyphenol content and NPs yield (r = 0.922), while it indicated a strong negative correlation with flavonoid content (r = −0.996). Additionally, a negative correlation was found between hydrodynamic size and antibacterial activity against Staphylococcus aureus (r = −0.854). The Ag/AgCl-NPs, after drying at 60 and 500 °C, were tested against Escherichia coli and S. aureus with minimum bactericidal concentrations below 19 µg/mL against E. coli. Minimum inhibitory concentration (MIC) for Ag/AgCl-NPs synthesized with A. arvensis and H. rovirosae extracts were above 312 µg/mL for S. aureus, while those synthesized with I. jinicuil showed MIC as low as 156 µg/mL. These results highlight the potential of medicinal plant extracts in the synthesis of Ag/AgCl with enhanced antibacterial properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信