{"title":"小样本变工况轴承故障诊断的先验知识嵌入对比注意学习网络","authors":"Wan Qiao;Xiuli Liu;Jinpeng Huang;Guoxin Wu","doi":"10.1109/JSEN.2024.3477456","DOIUrl":null,"url":null,"abstract":"In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 23","pages":"39967-39980"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples\",\"authors\":\"Wan Qiao;Xiuli Liu;Jinpeng Huang;Guoxin Wu\",\"doi\":\"10.1109/JSEN.2024.3477456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 23\",\"pages\":\"39967-39980\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720674/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10720674/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples
In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice