小样本变工况轴承故障诊断的先验知识嵌入对比注意学习网络

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wan Qiao;Xiuli Liu;Jinpeng Huang;Guoxin Wu
{"title":"小样本变工况轴承故障诊断的先验知识嵌入对比注意学习网络","authors":"Wan Qiao;Xiuli Liu;Jinpeng Huang;Guoxin Wu","doi":"10.1109/JSEN.2024.3477456","DOIUrl":null,"url":null,"abstract":"In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 23","pages":"39967-39980"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples\",\"authors\":\"Wan Qiao;Xiuli Liu;Jinpeng Huang;Guoxin Wu\",\"doi\":\"10.1109/JSEN.2024.3477456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 23\",\"pages\":\"39967-39980\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720674/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10720674/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在实际工业应用中,滚动轴承故障诊断由于难以收集故障数据,导致可用数据稀缺,面临着很大的挑战。这种稀缺性破坏了复杂情况下诊断的准确性、鲁棒性和泛化能力。此外,传统方法在数据有限和操作环境复杂的情况下表现不佳。为了解决这些问题,提出了一种先验知识嵌入对比注意学习网络(PKECALN)。PKECALN将特征提取、先验知识(PK)嵌入和故障分类集成到一个基于对比学习(CL)的统一框架中。该方法采用一维深度卷积神经网络(1D-DCNN)结合定制化顺序注意模块(SAM)深度提取多尺度时频故障特征。此外,CL的使用有效地缓解了数据稀缺的问题。该模型利用了PK嵌入机制,实现了数据和知识的双驱动。该机制使模型能够关注关键特征频率信息,指导故障信号基本特征的学习,从而提高轴承故障诊断的准确性。使用对比损失、交叉熵损失和均方误差(mse)设计了为该网络量身定制的复合损失函数。两个案例研究验证了PKECALN在小样本量和可变速度等复杂应用场景下的可行性和有效性。此外,这些案例研究之一包括烧蚀实验和可解释性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples
In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time–frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信