{"title":"一种增强虚假评论检测的杂交方法","authors":"Shu Xu;Haoqi Cuan;Zhichao Yin;Chunyong Yin","doi":"10.1109/TCSS.2024.3411635","DOIUrl":null,"url":null,"abstract":"User reviews on online consumption platforms are crucial for both consumers and merchants, serving as a reference for purchase decisions and product improvement. However, fake reviews can mislead consumers and harm merchant profits and reputation. Developing effective methods for detecting deceptive reviews is crucial to protecting the interests of both parties. In recent years, research on fake review detection has focused on improving machine learning and neural network methods to enhance the accuracy of fake review detection, neglecting the fundamental and necessary work of text feature representation for reviews. High-quality review text feature representation affects or even determines the quality and performance of fake review detection methods. The increasing prevalence of fake reviews results in a more complex distribution within the feature space of review texts, thus necessitating review embedding methods that exhibit comprehensive semantic comprehension and contextual awareness of review texts. To improve the quality of textual feature representation, we propose a review-embedding attention-based long short-term memory (A-LSTM) method that can encode the global semantics of reviews and detect the deception of the review content. A-LSTM uses attention gates to discover the importance of words, and by analyzing the importance of words, it can help distinguish the characteristics of real and fake reviews, and we propose an attention loss function to solve the problem of class imbalance. On the Yelp dataset, the accuracy of deceptive review detection has increased to 90.9%.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 6","pages":"7448-7466"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybridized Approach for Enhanced Fake Review Detection\",\"authors\":\"Shu Xu;Haoqi Cuan;Zhichao Yin;Chunyong Yin\",\"doi\":\"10.1109/TCSS.2024.3411635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User reviews on online consumption platforms are crucial for both consumers and merchants, serving as a reference for purchase decisions and product improvement. However, fake reviews can mislead consumers and harm merchant profits and reputation. Developing effective methods for detecting deceptive reviews is crucial to protecting the interests of both parties. In recent years, research on fake review detection has focused on improving machine learning and neural network methods to enhance the accuracy of fake review detection, neglecting the fundamental and necessary work of text feature representation for reviews. High-quality review text feature representation affects or even determines the quality and performance of fake review detection methods. The increasing prevalence of fake reviews results in a more complex distribution within the feature space of review texts, thus necessitating review embedding methods that exhibit comprehensive semantic comprehension and contextual awareness of review texts. To improve the quality of textual feature representation, we propose a review-embedding attention-based long short-term memory (A-LSTM) method that can encode the global semantics of reviews and detect the deception of the review content. A-LSTM uses attention gates to discover the importance of words, and by analyzing the importance of words, it can help distinguish the characteristics of real and fake reviews, and we propose an attention loss function to solve the problem of class imbalance. On the Yelp dataset, the accuracy of deceptive review detection has increased to 90.9%.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"11 6\",\"pages\":\"7448-7466\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10572477/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10572477/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A Hybridized Approach for Enhanced Fake Review Detection
User reviews on online consumption platforms are crucial for both consumers and merchants, serving as a reference for purchase decisions and product improvement. However, fake reviews can mislead consumers and harm merchant profits and reputation. Developing effective methods for detecting deceptive reviews is crucial to protecting the interests of both parties. In recent years, research on fake review detection has focused on improving machine learning and neural network methods to enhance the accuracy of fake review detection, neglecting the fundamental and necessary work of text feature representation for reviews. High-quality review text feature representation affects or even determines the quality and performance of fake review detection methods. The increasing prevalence of fake reviews results in a more complex distribution within the feature space of review texts, thus necessitating review embedding methods that exhibit comprehensive semantic comprehension and contextual awareness of review texts. To improve the quality of textual feature representation, we propose a review-embedding attention-based long short-term memory (A-LSTM) method that can encode the global semantics of reviews and detect the deception of the review content. A-LSTM uses attention gates to discover the importance of words, and by analyzing the importance of words, it can help distinguish the characteristics of real and fake reviews, and we propose an attention loss function to solve the problem of class imbalance. On the Yelp dataset, the accuracy of deceptive review detection has increased to 90.9%.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.