训练模型对适用于5G系统的深度联合源信道编码的影响

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ryunosuke Yamamoto;Keigo Matsumoto;Yoshiaki Inoue;Yuko Hara;Kazuki Maruta;Yu Nakayama;Daisuke Hisano
{"title":"训练模型对适用于5G系统的深度联合源信道编码的影响","authors":"Ryunosuke Yamamoto;Keigo Matsumoto;Yoshiaki Inoue;Yuko Hara;Kazuki Maruta;Yu Nakayama;Daisuke Hisano","doi":"10.23919/comex.2024COL0014","DOIUrl":null,"url":null,"abstract":"With the development of 5G technology and the proliferation of IoT devices, Deep Joint Source-Channel Coding (DeepJSCC) has attracted attention for efficiently transmitting video and image data. DeepJSCC can maintain a good peak signal-to-noise ratio (PSNR) of images even at a meager signal-to-noise ratio (SNR). In cellular communication systems, the compression ratio must adapt to channel fluctuations, requiring multiple training models at the base station. However, the optimal SNR and compression ratio combination during training has yet to be reported. This paper investigates the necessary number of training models by stepwise varying SNR and compression ratio during training.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 12","pages":"466-469"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633225","citationCount":"0","resultStr":"{\"title\":\"Impact of Training Models on Deep Joint Source-Channel Coding Applicable to 5G Systems\",\"authors\":\"Ryunosuke Yamamoto;Keigo Matsumoto;Yoshiaki Inoue;Yuko Hara;Kazuki Maruta;Yu Nakayama;Daisuke Hisano\",\"doi\":\"10.23919/comex.2024COL0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of 5G technology and the proliferation of IoT devices, Deep Joint Source-Channel Coding (DeepJSCC) has attracted attention for efficiently transmitting video and image data. DeepJSCC can maintain a good peak signal-to-noise ratio (PSNR) of images even at a meager signal-to-noise ratio (SNR). In cellular communication systems, the compression ratio must adapt to channel fluctuations, requiring multiple training models at the base station. However, the optimal SNR and compression ratio combination during training has yet to be reported. This paper investigates the necessary number of training models by stepwise varying SNR and compression ratio during training.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 12\",\"pages\":\"466-469\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633225\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633225/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10633225/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着5G技术的发展和物联网设备的普及,深度联合源信道编码(DeepJSCC)为高效传输视频和图像数据而受到人们的关注。DeepJSCC即使在较低的信噪比(SNR)下也能保持较好的图像峰值信噪比(PSNR)。在蜂窝通信系统中,压缩比必须适应信道波动,这需要在基站中建立多个训练模型。然而,在训练过程中,最佳的信噪比和压缩比组合还没有报道。本文通过在训练过程中逐步改变信噪比和压缩比来研究训练模型所需的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Training Models on Deep Joint Source-Channel Coding Applicable to 5G Systems
With the development of 5G technology and the proliferation of IoT devices, Deep Joint Source-Channel Coding (DeepJSCC) has attracted attention for efficiently transmitting video and image data. DeepJSCC can maintain a good peak signal-to-noise ratio (PSNR) of images even at a meager signal-to-noise ratio (SNR). In cellular communication systems, the compression ratio must adapt to channel fluctuations, requiring multiple training models at the base station. However, the optimal SNR and compression ratio combination during training has yet to be reported. This paper investigates the necessary number of training models by stepwise varying SNR and compression ratio during training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信