基于rssi的2步鲁棒DNN模型室内定位

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Taisei Kosaka;Steven Wandale;Koichi Ichige
{"title":"基于rssi的2步鲁棒DNN模型室内定位","authors":"Taisei Kosaka;Steven Wandale;Koichi Ichige","doi":"10.23919/comex.2024XBL0165","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel approach called the 2-Step Robust Deep Neural Network (DNN), designed specifically for indoor localization utilizing received signal strength indicator (RSSI) data. This method represents an advancement over the previously proposed 2-Step Extreme Gradient Boosting (XGBoost), aiming to enhance estimation precision by leveraging a single coordinate (\n<tex>$x$</tex>\n or \n<tex>$y$</tex>\n) as a feature. The pivotal alterations involve transitioning from XGBoost to DNN and refining the training data to develop a resilient learning model for positional coordinates. Through comprehensive simulations, we demonstrate that the proposed 2-Step Robust DNN attains superior estimation accuracy while preserving the absence of constraints on the dataset.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 12","pages":"513-516"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713854","citationCount":"0","resultStr":"{\"title\":\"2-Step Robust DNN Model for RSSI-Based Indoor Localization\",\"authors\":\"Taisei Kosaka;Steven Wandale;Koichi Ichige\",\"doi\":\"10.23919/comex.2024XBL0165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel approach called the 2-Step Robust Deep Neural Network (DNN), designed specifically for indoor localization utilizing received signal strength indicator (RSSI) data. This method represents an advancement over the previously proposed 2-Step Extreme Gradient Boosting (XGBoost), aiming to enhance estimation precision by leveraging a single coordinate (\\n<tex>$x$</tex>\\n or \\n<tex>$y$</tex>\\n) as a feature. The pivotal alterations involve transitioning from XGBoost to DNN and refining the training data to develop a resilient learning model for positional coordinates. Through comprehensive simulations, we demonstrate that the proposed 2-Step Robust DNN attains superior estimation accuracy while preserving the absence of constraints on the dataset.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 12\",\"pages\":\"513-516\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713854/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713854/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种称为两步鲁棒深度神经网络(DNN)的新方法,该方法专门用于利用接收到的信号强度指示器(RSSI)数据进行室内定位。该方法代表了先前提出的2-Step Extreme Gradient Boosting (XGBoost)的进步,旨在通过利用单个坐标($x$或$y$)作为特征来提高估计精度。关键的改变包括从XGBoost到DNN的转换,并改进训练数据以开发位置坐标的弹性学习模型。通过综合仿真,我们证明了所提出的2步鲁棒深度神经网络在保持数据集不受约束的情况下获得了较高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Step Robust DNN Model for RSSI-Based Indoor Localization
In this paper, we introduce a novel approach called the 2-Step Robust Deep Neural Network (DNN), designed specifically for indoor localization utilizing received signal strength indicator (RSSI) data. This method represents an advancement over the previously proposed 2-Step Extreme Gradient Boosting (XGBoost), aiming to enhance estimation precision by leveraging a single coordinate ( $x$ or $y$ ) as a feature. The pivotal alterations involve transitioning from XGBoost to DNN and refining the training data to develop a resilient learning model for positional coordinates. Through comprehensive simulations, we demonstrate that the proposed 2-Step Robust DNN attains superior estimation accuracy while preserving the absence of constraints on the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信