牺牲表面活性剂提高采收率:流体密度泛函理论研究

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zheng Xu, Jin Cheng*, Yuanlong Hu, Yanghejia Wu, Siyuan Fan, Gaoxin Yu, Yunwen Wang, Cheng Lian* and Honglai Liu, 
{"title":"牺牲表面活性剂提高采收率:流体密度泛函理论研究","authors":"Zheng Xu,&nbsp;Jin Cheng*,&nbsp;Yuanlong Hu,&nbsp;Yanghejia Wu,&nbsp;Siyuan Fan,&nbsp;Gaoxin Yu,&nbsp;Yunwen Wang,&nbsp;Cheng Lian* and Honglai Liu,&nbsp;","doi":"10.1021/acs.langmuir.4c0307510.1021/acs.langmuir.4c03075","DOIUrl":null,"url":null,"abstract":"<p >In the chemically enhanced oil recovery (CEOR) processes, heavy components in crude oil, such as asphaltenes, adhere to reservoir rocks, significantly impeding crude oil extraction. Surfactants are frequently utilized to improve oil recovery due to their ability to reduce interfacial tension (IFT) and modify surface wettability. Nevertheless, indiscriminate surfactant usage may result in resource wastage and hinder the attainment of optimal recovery outcomes. Therefore, it is urgent to accurately and efficiently screen out optimal surfactants suitable for different oil fields. This work employs fluid density functional theory (FDFT) to investigate the competitive adsorption mechanism of surfactants and asphaltenes on rock interfaces. We examined the impact of surfactants on asphaltene adsorption and determined the optimal surfactant concentration and chain length for differing reservoir electrical properties and asphaltene compositions. Furthermore, a comprehensive assessment of surfactants was conducted, considering both performance and economic factors. The findings contribute to a deeper comprehension of the displacement effect of surfactants on asphaltenes and offer scientific screening solutions for surfactants in oil recovery processes.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 48","pages":"25447–25459 25447–25459"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sacrificing Surfactants to Improve Oil Recovery: A Fluid Density Functional Theory Study\",\"authors\":\"Zheng Xu,&nbsp;Jin Cheng*,&nbsp;Yuanlong Hu,&nbsp;Yanghejia Wu,&nbsp;Siyuan Fan,&nbsp;Gaoxin Yu,&nbsp;Yunwen Wang,&nbsp;Cheng Lian* and Honglai Liu,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0307510.1021/acs.langmuir.4c03075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the chemically enhanced oil recovery (CEOR) processes, heavy components in crude oil, such as asphaltenes, adhere to reservoir rocks, significantly impeding crude oil extraction. Surfactants are frequently utilized to improve oil recovery due to their ability to reduce interfacial tension (IFT) and modify surface wettability. Nevertheless, indiscriminate surfactant usage may result in resource wastage and hinder the attainment of optimal recovery outcomes. Therefore, it is urgent to accurately and efficiently screen out optimal surfactants suitable for different oil fields. This work employs fluid density functional theory (FDFT) to investigate the competitive adsorption mechanism of surfactants and asphaltenes on rock interfaces. We examined the impact of surfactants on asphaltene adsorption and determined the optimal surfactant concentration and chain length for differing reservoir electrical properties and asphaltene compositions. Furthermore, a comprehensive assessment of surfactants was conducted, considering both performance and economic factors. The findings contribute to a deeper comprehension of the displacement effect of surfactants on asphaltenes and offer scientific screening solutions for surfactants in oil recovery processes.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"40 48\",\"pages\":\"25447–25459 25447–25459\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03075\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03075","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在化学提高采收率(CEOR)过程中,原油中的重质成分,如沥青质,会附着在储层岩石上,严重阻碍原油的开采。由于表面活性剂具有降低界面张力(IFT)和改变表面润湿性的能力,因此经常用于提高采收率。然而,不加选择地使用表面活性剂可能会导致资源浪费,并阻碍最佳采收率的实现。因此,准确、高效地筛选出适合不同油田的最佳表面活性剂是当务之急。本文采用流体密度泛函理论(FDFT)研究了表面活性剂和沥青质在岩石界面上的竞争吸附机理。我们研究了表面活性剂对沥青质吸附的影响,并确定了针对不同储层电性和沥青质组成的最佳表面活性剂浓度和链长。此外,考虑到性能和经济因素,对表面活性剂进行了综合评估。这一发现有助于更深入地理解表面活性剂对沥青质的驱替作用,并为采油过程中表面活性剂的筛选提供科学的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sacrificing Surfactants to Improve Oil Recovery: A Fluid Density Functional Theory Study

Sacrificing Surfactants to Improve Oil Recovery: A Fluid Density Functional Theory Study

In the chemically enhanced oil recovery (CEOR) processes, heavy components in crude oil, such as asphaltenes, adhere to reservoir rocks, significantly impeding crude oil extraction. Surfactants are frequently utilized to improve oil recovery due to their ability to reduce interfacial tension (IFT) and modify surface wettability. Nevertheless, indiscriminate surfactant usage may result in resource wastage and hinder the attainment of optimal recovery outcomes. Therefore, it is urgent to accurately and efficiently screen out optimal surfactants suitable for different oil fields. This work employs fluid density functional theory (FDFT) to investigate the competitive adsorption mechanism of surfactants and asphaltenes on rock interfaces. We examined the impact of surfactants on asphaltene adsorption and determined the optimal surfactant concentration and chain length for differing reservoir electrical properties and asphaltene compositions. Furthermore, a comprehensive assessment of surfactants was conducted, considering both performance and economic factors. The findings contribute to a deeper comprehension of the displacement effect of surfactants on asphaltenes and offer scientific screening solutions for surfactants in oil recovery processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信