配体功能化有机金属多金属氧酸盐作为酰胺氢化的高效前驱体催化剂

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shun Hayashi*, Koichi Momma, Kiyohiro Adachi and Daisuke Hashizume, 
{"title":"配体功能化有机金属多金属氧酸盐作为酰胺氢化的高效前驱体催化剂","authors":"Shun Hayashi*,&nbsp;Koichi Momma,&nbsp;Kiyohiro Adachi and Daisuke Hashizume,&nbsp;","doi":"10.1021/acsorginorgau.4c0007110.1021/acsorginorgau.4c00071","DOIUrl":null,"url":null,"abstract":"<p >Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh–Mo organometallic polyoxometalate, [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp<sup>E</sup> = C<sub>5</sub>(CH<sub>3</sub>)<sub>3</sub>(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>), with Rh–O–Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh–Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] showing the highest activity, followed by [(RhCp*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp* = C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), and then RhCl<sub>3</sub> combined with (NH<sub>4</sub>)<sub>6</sub>[Mo<sub>7</sub>O<sub>24</sub>]·4H<sub>2</sub>O. The catalyst prepared from [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H<sub>2</sub>, 353–393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH<sub>3</sub>-free conditions. Furthermore, we determine that carbonyl oxygen atoms in Cp<sup>E</sup> ligands contribute to the electrostatic interaction with Al<sub>2</sub>O<sub>3</sub>, leading to the high dispersibility of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] on the support. We conclude that the high efficiency of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the Cp<sup>E</sup> ligands and support.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"705–711 705–711"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00071","citationCount":"0","resultStr":"{\"title\":\"Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation\",\"authors\":\"Shun Hayashi*,&nbsp;Koichi Momma,&nbsp;Kiyohiro Adachi and Daisuke Hashizume,&nbsp;\",\"doi\":\"10.1021/acsorginorgau.4c0007110.1021/acsorginorgau.4c00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh–Mo organometallic polyoxometalate, [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp<sup>E</sup> = C<sub>5</sub>(CH<sub>3</sub>)<sub>3</sub>(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>), with Rh–O–Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh–Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] showing the highest activity, followed by [(RhCp*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp* = C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), and then RhCl<sub>3</sub> combined with (NH<sub>4</sub>)<sub>6</sub>[Mo<sub>7</sub>O<sub>24</sub>]·4H<sub>2</sub>O. The catalyst prepared from [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H<sub>2</sub>, 353–393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH<sub>3</sub>-free conditions. Furthermore, we determine that carbonyl oxygen atoms in Cp<sup>E</sup> ligands contribute to the electrostatic interaction with Al<sub>2</sub>O<sub>3</sub>, leading to the high dispersibility of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] on the support. We conclude that the high efficiency of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the Cp<sup>E</sup> ligands and support.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":\"4 6\",\"pages\":\"705–711 705–711\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

酰胺加氢是生产胺的一个重要过程,高效非均相催化剂的发展依赖于两组分协同作用的双金属活性位点的产生。在本研究中,我们开发了一种用配体功能化有机金属多金属氧酸盐制备催化剂的方法,通过合成一种铑-钼有机金属多金属氧酸盐[(RhCpE)4Mo4O16] (CpE = C5(CH3)3(COOC2H5)2),以铑-氧-钼界面结构和乙氧羰基功能化配体为催化剂前驱体。负载型Rh-Mo催化剂的酰胺加氢活性与前驱体不同,以[(RhCpE)4Mo4O16]活性最高,其次是[(RhCp*)4Mo4O16] (Cp* = C5(CH3)5),最后是RhCl3与(NH4)6[Mo7O24]·4H2O结合。由[(RhCpE)4Mo4O16]制备的催化剂在温和的条件下(0.8 MPa H2, 353-393 K)能有效地加氢叔酰胺、仲酰胺和伯酰胺,在无nh3条件下对伯酰胺加氢具有较高的活性和选择性(转化率为97%,选择性为76%)。此外,我们确定CpE配体中的羰基氧原子有助于与Al2O3的静电相互作用,导致[(RhCpE)4Mo4O16]在载体上的高分散性。我们得出结论,[(RhCpE)4Mo4O16]作为催化剂前驱体的高效率源于CpE配体和载体之间的静电相互作用有助于Rh/Mo界面活性位点的有效形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation

Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh–Mo organometallic polyoxometalate, [(RhCpE)4Mo4O16] (CpE = C5(CH3)3(COOC2H5)2), with Rh–O–Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh–Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCpE)4Mo4O16] showing the highest activity, followed by [(RhCp*)4Mo4O16] (Cp* = C5(CH3)5), and then RhCl3 combined with (NH4)6[Mo7O24]·4H2O. The catalyst prepared from [(RhCpE)4Mo4O16] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H2, 353–393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH3-free conditions. Furthermore, we determine that carbonyl oxygen atoms in CpE ligands contribute to the electrostatic interaction with Al2O3, leading to the high dispersibility of [(RhCpE)4Mo4O16] on the support. We conclude that the high efficiency of [(RhCpE)4Mo4O16] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the CpE ligands and support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信