扫描隧道显微镜中表面等离子体传播和太赫兹近场波形的控制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shaoxiang Sheng*, Li Chen, Johannes Schust, Kurt Lichtenberg, Mohamad Abdo, Felix Huber, Susanne Baumann and Sebastian Loth*, 
{"title":"扫描隧道显微镜中表面等离子体传播和太赫兹近场波形的控制","authors":"Shaoxiang Sheng*,&nbsp;Li Chen,&nbsp;Johannes Schust,&nbsp;Kurt Lichtenberg,&nbsp;Mohamad Abdo,&nbsp;Felix Huber,&nbsp;Susanne Baumann and Sebastian Loth*,&nbsp;","doi":"10.1021/acs.nanolett.4c0415210.1021/acs.nanolett.4c04152","DOIUrl":null,"url":null,"abstract":"<p >Coupling subcycle THz pulses to a scanning tunneling microscope (STM) enables ultrafast spectroscopy at the atomic scale. This technique critically depends on the shape of the THz near-field waveform in the tunnel junction. We characterize the THz electric field waveform in the STM junction by electro-optic sampling of tip-scattered THz light (<i>s</i>-EOS) and pulse correlation using the THz-induced current. Combined with full-wave simulations, we identify THz spectral distortions and reflections arising from THz surface plasmon propagation along the tip wire and cavity modes at the tip apex. By optimizing the tip shape, tip holder geometry and materials, we achieve a drastically flattened THz near-field waveform. This optimization ensures point-like coupling to the far-field and, thus, allows precise Gouy phase control at the STM tip. The improved THz waveforms facilitate atomically-resolved THz time-domain spectroscopy in the STM with high dynamic range for investigating local electron and phonon dynamics on surfaces.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 48","pages":"15291–15299 15291–15299"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c04152","citationCount":"0","resultStr":"{\"title\":\"Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope\",\"authors\":\"Shaoxiang Sheng*,&nbsp;Li Chen,&nbsp;Johannes Schust,&nbsp;Kurt Lichtenberg,&nbsp;Mohamad Abdo,&nbsp;Felix Huber,&nbsp;Susanne Baumann and Sebastian Loth*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0415210.1021/acs.nanolett.4c04152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Coupling subcycle THz pulses to a scanning tunneling microscope (STM) enables ultrafast spectroscopy at the atomic scale. This technique critically depends on the shape of the THz near-field waveform in the tunnel junction. We characterize the THz electric field waveform in the STM junction by electro-optic sampling of tip-scattered THz light (<i>s</i>-EOS) and pulse correlation using the THz-induced current. Combined with full-wave simulations, we identify THz spectral distortions and reflections arising from THz surface plasmon propagation along the tip wire and cavity modes at the tip apex. By optimizing the tip shape, tip holder geometry and materials, we achieve a drastically flattened THz near-field waveform. This optimization ensures point-like coupling to the far-field and, thus, allows precise Gouy phase control at the STM tip. The improved THz waveforms facilitate atomically-resolved THz time-domain spectroscopy in the STM with high dynamic range for investigating local electron and phonon dynamics on surfaces.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 48\",\"pages\":\"15291–15299 15291–15299\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c04152\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04152\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将亚周期太赫兹脉冲耦合到扫描隧道显微镜(STM)上,可以实现原子尺度上的超快光谱。这种技术关键取决于隧道结中太赫兹近场波形的形状。我们利用尖端散射太赫兹光(s-EOS)的电光采样和太赫兹感应电流的脉冲相关来表征STM结中的太赫兹电场波形。结合全波模拟,我们确定了太赫兹表面等离子体沿尖端线和尖端空腔模式传播所引起的太赫兹光谱畸变和反射。通过优化尖端形状,尖端支架几何形状和材料,我们实现了一个非常平坦的太赫兹近场波形。这种优化确保了与远场的点状耦合,从而允许在STM尖端进行精确的guy相位控制。改进的太赫兹波形有助于在高动态范围的STM中进行原子分辨太赫兹时域光谱,用于研究表面上的局部电子和声子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of Surface Plasmon Propagation and Terahertz Near-Field Waveforms in a Scanning Tunneling Microscope

Coupling subcycle THz pulses to a scanning tunneling microscope (STM) enables ultrafast spectroscopy at the atomic scale. This technique critically depends on the shape of the THz near-field waveform in the tunnel junction. We characterize the THz electric field waveform in the STM junction by electro-optic sampling of tip-scattered THz light (s-EOS) and pulse correlation using the THz-induced current. Combined with full-wave simulations, we identify THz spectral distortions and reflections arising from THz surface plasmon propagation along the tip wire and cavity modes at the tip apex. By optimizing the tip shape, tip holder geometry and materials, we achieve a drastically flattened THz near-field waveform. This optimization ensures point-like coupling to the far-field and, thus, allows precise Gouy phase control at the STM tip. The improved THz waveforms facilitate atomically-resolved THz time-domain spectroscopy in the STM with high dynamic range for investigating local electron and phonon dynamics on surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信