{"title":"揭示约束Mo2CTx MXene层的阴离子结构,用于稳健的Li+存储","authors":"Junyan Li, Wei Zhang*, Xin Ge, Wenjuan Han, Xiangyu Wu, Boning Xu, Hong-Yan Liu, Xin Liu, Yu Wang, Ming Lu* and Weitao Zheng*, ","doi":"10.1021/acs.nanolett.4c0231410.1021/acs.nanolett.4c02314","DOIUrl":null,"url":null,"abstract":"<p >Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>, and PO<sub>4</sub><sup>3–</sup> anions into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl<sup>–</sup> ions can be intercalated into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on <i>in situ</i> X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g<sup>–1</sup> after 400 cycles at 200 mA g<sup>–1</sup>. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 48","pages":"15202–15209 15202–15209"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage\",\"authors\":\"Junyan Li, Wei Zhang*, Xin Ge, Wenjuan Han, Xiangyu Wu, Boning Xu, Hong-Yan Liu, Xin Liu, Yu Wang, Ming Lu* and Weitao Zheng*, \",\"doi\":\"10.1021/acs.nanolett.4c0231410.1021/acs.nanolett.4c02314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>, and PO<sub>4</sub><sup>3–</sup> anions into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl<sup>–</sup> ions can be intercalated into Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on <i>in situ</i> X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo<sub>2</sub>CT<sub><i>x</i></sub> MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g<sup>–1</sup> after 400 cycles at 200 mA g<sup>–1</sup>. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 48\",\"pages\":\"15202–15209 15202–15209\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02314\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
可控阳离子预插层可以提高MXenes的电化学活性和动力学。然而,阳离子和电解质离子之间的静电斥力导致电解质离子传输动力学恶化。在此,通过将阳离子策略转变为阴离子策略,我们通过使用不同的蚀刻剂成功地将Cl -, SO42 -和PO43 -阴离子预插入到Mo2CTx MXene中。Mo2CTx MXene具有较小的离子半径和较低的电荷,可以嵌入更多的Cl -离子,从而导致更高的位错密度、更大的层间距和更大的负Zeta电位值。依靠原位x射线衍射,我们监测了层间演化。Mo2CTx MXene中较低的锂离子浓度梯度提供了较低的浓度极化,快速的充电和离子转移动力学,以及优异的寿命,在200 mA g-1下循环400次后保持540.49 mAh g-1。阴离子预插层的作用为MXene材料的功能导向设计提供了新的见解。
Revealing the Structural Architecture of Anions Confining Mo2CTx MXene Layers for Robust Li+ Storage
Controllable cation preintercalation enables enhancing the electrochemical activity and kinetics of MXenes. However, the electrostatic repulsion between cations and electrolyte ions induces deteriorative electrolyte ion transport kinetics. Herein, by shifting perceptions from the cation to anion strategies, we successfully preintercalate Cl–, SO42–, and PO43– anions into Mo2CTx MXene via the utilization of diverse etching agents. Due to a smaller ionic radius and low charge, more Cl– ions can be intercalated into Mo2CTx MXene and induce higher dislocation density, larger interlayer spacing, and more negative Zeta potential value. Relying on in situ X-ray diffraction, we monitored the interlayer evolution. The lower lithium-ion concentration gradient in the Mo2CTx MXene delivers a lower concentration polarization, a fast charge and ion transfer kinetics, and an excellent lifespan, holding 540.49 mAh g–1 after 400 cycles at 200 mA g–1. The effect of anion preintercalation provides new insights into the function-oriented design of MXene materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.