Stefano Marni, Tommaso P. Fraccia, Tommaso Bellini
{"title":"随机序列DNA寡聚物制造液晶:一个在超多样化环境中集体排序的案例","authors":"Stefano Marni, Tommaso P. Fraccia, Tommaso Bellini","doi":"10.1021/acsnano.4c09400","DOIUrl":null,"url":null,"abstract":"The availability of synthetic, analytical, and predictive tools makes DNA an ideal platform, not yet considered, to investigate statistical and soft matter physics. Here we report and interpret the equilibrium collective ordering in solutions of random-sequence DNA (rsDNA) oligomers of lengths <i>L</i> = 8 and <i>L</i> = 12. Despite the extreme molecular diversity inherent in rsDNA solutions, which for <i>L</i> = 12 are composed of 20 million distinct molecular species, these systems develop long-range columnar liquid crystal (LC) ordering when equilibrated at high osmotic pressure. By a combination of experimental models and computed statistics, we demonstrate that the residual end-to-end attraction between rsDNA duplexes, which typically terminate with various forms of pairing errors, is indeed sufficient to drive LC ordering. The resulting narrow range of isotropic-LC phase coexistence, in seeming contrast with the variety of phase behaviors of the species composing rsDNA, demonstrates that the (nearly) continuum distribution of molecular interaction strengths effectively reduces the tendency for demixing instead of enhancing it, in line with theoretical modeling.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"30 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random-Sequence DNA Oligomers Make Liquid Crystals: A Case of Collective Ordering in a Superdiverse Environment\",\"authors\":\"Stefano Marni, Tommaso P. Fraccia, Tommaso Bellini\",\"doi\":\"10.1021/acsnano.4c09400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of synthetic, analytical, and predictive tools makes DNA an ideal platform, not yet considered, to investigate statistical and soft matter physics. Here we report and interpret the equilibrium collective ordering in solutions of random-sequence DNA (rsDNA) oligomers of lengths <i>L</i> = 8 and <i>L</i> = 12. Despite the extreme molecular diversity inherent in rsDNA solutions, which for <i>L</i> = 12 are composed of 20 million distinct molecular species, these systems develop long-range columnar liquid crystal (LC) ordering when equilibrated at high osmotic pressure. By a combination of experimental models and computed statistics, we demonstrate that the residual end-to-end attraction between rsDNA duplexes, which typically terminate with various forms of pairing errors, is indeed sufficient to drive LC ordering. The resulting narrow range of isotropic-LC phase coexistence, in seeming contrast with the variety of phase behaviors of the species composing rsDNA, demonstrates that the (nearly) continuum distribution of molecular interaction strengths effectively reduces the tendency for demixing instead of enhancing it, in line with theoretical modeling.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09400\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09400","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Random-Sequence DNA Oligomers Make Liquid Crystals: A Case of Collective Ordering in a Superdiverse Environment
The availability of synthetic, analytical, and predictive tools makes DNA an ideal platform, not yet considered, to investigate statistical and soft matter physics. Here we report and interpret the equilibrium collective ordering in solutions of random-sequence DNA (rsDNA) oligomers of lengths L = 8 and L = 12. Despite the extreme molecular diversity inherent in rsDNA solutions, which for L = 12 are composed of 20 million distinct molecular species, these systems develop long-range columnar liquid crystal (LC) ordering when equilibrated at high osmotic pressure. By a combination of experimental models and computed statistics, we demonstrate that the residual end-to-end attraction between rsDNA duplexes, which typically terminate with various forms of pairing errors, is indeed sufficient to drive LC ordering. The resulting narrow range of isotropic-LC phase coexistence, in seeming contrast with the variety of phase behaviors of the species composing rsDNA, demonstrates that the (nearly) continuum distribution of molecular interaction strengths effectively reduces the tendency for demixing instead of enhancing it, in line with theoretical modeling.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.