Jakub Durka, Barbara Zielińska, Prof. Dorota Gryko
{"title":"通过重氮化选择性转化解锁脂肪族胺","authors":"Jakub Durka, Barbara Zielińska, Prof. Dorota Gryko","doi":"10.1002/anie.202419450","DOIUrl":null,"url":null,"abstract":"<p>While aromatic diazonium salts are important reagents in organic synthesis, <i>‘Diazonium ions generated from ordinary aliphatic primary amines are usually useless for preparative purposes, since they lead to a mixture of products giving not only substitution by any nucleophile present, but also elimination and rearrangements if the substrate permits</i>.’<sup>1</sup> In this work, we report that this statement is no longer valid, and it is now possible to control diazotization of aliphatic amines by utilizing isopentyl nitrite in HFIP. This transformation enabled electrophilic aromatic substitution with these highly abundant and commercially available alkyl reagents, as well as transforming them into building blocks typically employed in organic synthesis. The methodology opens an avenue for reactions involving aliphatic amines, even such demanding substrates as amino acids, as a source of carbocations thus expanding the degree of chemical space.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 7","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202419450","citationCount":"0","resultStr":"{\"title\":\"Aliphatic Amines Unlocked for Selective Transformations through Diazotization\",\"authors\":\"Jakub Durka, Barbara Zielińska, Prof. Dorota Gryko\",\"doi\":\"10.1002/anie.202419450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While aromatic diazonium salts are important reagents in organic synthesis, <i>‘Diazonium ions generated from ordinary aliphatic primary amines are usually useless for preparative purposes, since they lead to a mixture of products giving not only substitution by any nucleophile present, but also elimination and rearrangements if the substrate permits</i>.’<sup>1</sup> In this work, we report that this statement is no longer valid, and it is now possible to control diazotization of aliphatic amines by utilizing isopentyl nitrite in HFIP. This transformation enabled electrophilic aromatic substitution with these highly abundant and commercially available alkyl reagents, as well as transforming them into building blocks typically employed in organic synthesis. The methodology opens an avenue for reactions involving aliphatic amines, even such demanding substrates as amino acids, as a source of carbocations thus expanding the degree of chemical space.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 7\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202419450\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202419450\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202419450","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aliphatic Amines Unlocked for Selective Transformations through Diazotization
While aromatic diazonium salts are important reagents in organic synthesis, ‘Diazonium ions generated from ordinary aliphatic primary amines are usually useless for preparative purposes, since they lead to a mixture of products giving not only substitution by any nucleophile present, but also elimination and rearrangements if the substrate permits.’1 In this work, we report that this statement is no longer valid, and it is now possible to control diazotization of aliphatic amines by utilizing isopentyl nitrite in HFIP. This transformation enabled electrophilic aromatic substitution with these highly abundant and commercially available alkyl reagents, as well as transforming them into building blocks typically employed in organic synthesis. The methodology opens an avenue for reactions involving aliphatic amines, even such demanding substrates as amino acids, as a source of carbocations thus expanding the degree of chemical space.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.