整合机器学习和大型语言模型以推进电化学反应的探索

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Zhiling Zheng, Dr. Federico Florit, Brooke Jin, Haoyang Wu, Dr. Shih-Cheng Li, Dr. Kakasaheb Y. Nandiwale, Dr. Chase A. Salazar, Dr. Jason G. Mustakis, Prof. William H. Green, Prof. Klavs F. Jensen
{"title":"整合机器学习和大型语言模型以推进电化学反应的探索","authors":"Dr. Zhiling Zheng,&nbsp;Dr. Federico Florit,&nbsp;Brooke Jin,&nbsp;Haoyang Wu,&nbsp;Dr. Shih-Cheng Li,&nbsp;Dr. Kakasaheb Y. Nandiwale,&nbsp;Dr. Chase A. Salazar,&nbsp;Dr. Jason G. Mustakis,&nbsp;Prof. William H. Green,&nbsp;Prof. Klavs F. Jensen","doi":"10.1002/anie.202418074","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text-mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (&gt;90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human-AI collaboration proved effective, efficiently identifying high-yield conditions for 8 drug-like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT-4-on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202418074","citationCount":"0","resultStr":"{\"title\":\"Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions\",\"authors\":\"Dr. Zhiling Zheng,&nbsp;Dr. Federico Florit,&nbsp;Brooke Jin,&nbsp;Haoyang Wu,&nbsp;Dr. Shih-Cheng Li,&nbsp;Dr. Kakasaheb Y. Nandiwale,&nbsp;Dr. Chase A. Salazar,&nbsp;Dr. Jason G. Mustakis,&nbsp;Prof. William H. Green,&nbsp;Prof. Klavs F. Jensen\",\"doi\":\"10.1002/anie.202418074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text-mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (&gt;90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human-AI collaboration proved effective, efficiently identifying high-yield conditions for 8 drug-like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT-4-on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202418074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418074\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学C-H氧化反应为功能化碳氢化合物提供了一条可持续的途径,但寻找合适的底物和优化合成仍然具有挑战性。我们报告了一种结合机器学习(ML)和大型语言模型(LLMs)的集成方法,以简化电化学C-H氧化反应的探索。利用批量快速筛选电化学平台,我们评估了广泛的反应,最初根据反应性对底物进行分类,而LLMs则通过文本挖掘文献数据来扩大训练集。所得到的用于反应性预测的ML模型达到了很高的精度(>90%),并实现了对大量商用分子的虚拟筛选。为了优化所选底物的反应条件,LLMs被提示生成迭代提高产率的代码。这种人类与人工智能的合作被证明是有效的,有效地确定了8种药物样物质或中间体的高产条件。值得注意的是,我们对10种不同llm(包括LLaMA、Claude和GPT-4)的准确性和可靠性进行了基准测试,这些llm基于化学家给出的自然语言提示生成和执行与ML相关的代码,以展示他们的工具制作(代码生成)和工具使用(函数调用)能力以及加速四种不同任务研究的潜力。我们还收集了一个实验基准数据集,包括1071个电化学C-H氧化反应的反应条件和产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions

Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions

Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text-mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human-AI collaboration proved effective, efficiently identifying high-yield conditions for 8 drug-like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT-4-on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信