Ying-Fei Li, Emily M. Been, Sudhaman Balguri, Chun-Jing Jia, Mira B. Mahendru, Zhi-Cheng Wang, Yi Cui, Su-Di Chen, Makoto Hashimoto, Dong-Hui Lu, Brian Moritz, Jan Zaanen, Fazel Tafti, Thomas P. Devereaux, Zhi-Xun Shen
{"title":"伊辛系统中自旋极化极化子的巨磁阻","authors":"Ying-Fei Li, Emily M. Been, Sudhaman Balguri, Chun-Jing Jia, Mira B. Mahendru, Zhi-Cheng Wang, Yi Cui, Su-Di Chen, Makoto Hashimoto, Dong-Hui Lu, Brian Moritz, Jan Zaanen, Fazel Tafti, Thomas P. Devereaux, Zhi-Xun Shen","doi":"10.1073/pnas.2409846121","DOIUrl":null,"url":null,"abstract":"Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> X <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> (M <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mo>=</mml:mo> </mml:math> </jats:inline-formula> Cd, In, Zn; X <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mo>=</mml:mo> </mml:math> </jats:inline-formula> P, As), distinct from the traditional avenues involving Kondo–Ruderman–Kittel–Kasuya–Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> P <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> . While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi mathvariant=\"normal\">MR</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> ) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this nonquasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>p</mml:mi> </mml:math> </jats:inline-formula> - <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>f</mml:mi> </mml:math> </jats:inline-formula> mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> X <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"46 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colossal magnetoresistance from spin-polarized polarons in an Ising system\",\"authors\":\"Ying-Fei Li, Emily M. Been, Sudhaman Balguri, Chun-Jing Jia, Mira B. Mahendru, Zhi-Cheng Wang, Yi Cui, Su-Di Chen, Makoto Hashimoto, Dong-Hui Lu, Brian Moritz, Jan Zaanen, Fazel Tafti, Thomas P. Devereaux, Zhi-Xun Shen\",\"doi\":\"10.1073/pnas.2409846121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> X <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> (M <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mo>=</mml:mo> </mml:math> </jats:inline-formula> Cd, In, Zn; X <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mo>=</mml:mo> </mml:math> </jats:inline-formula> P, As), distinct from the traditional avenues involving Kondo–Ruderman–Kittel–Kasuya–Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> P <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> . While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ( <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi mathvariant=\\\"normal\\\">MR</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> ) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this nonquasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>p</mml:mi> </mml:math> </jats:inline-formula> - <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>f</mml:mi> </mml:math> </jats:inline-formula> mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> X <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow/> <mml:mn>2</mml:mn> </mml:msub> </mml:math> </jats:inline-formula> family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409846121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409846121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
最近的实验表明,在一系列材料EuM 2 X 2 (M = Cd, in, Zn;X = P, As),与涉及Kondo-Ruderman-Kittel-Kasuya-Yosida交叉的传统途径不同,具有结构畸变的磁相变或拓扑相变。在这里,我们使用角分辨光发射光谱和密度泛函理论计算来探索它们的起源,特别关注eucd2p2。虽然低能谱权值与输运谱对应的最大磁阻(tmr)温度附近的电阻率异常值基本一致,但谱完全不相干且被强烈抑制,没有朗道准粒子的迹象。利用系统的材料和温度依赖性研究,辅以理论,我们将这种非准粒子的夸张归因于纠缠磁和晶格相互作用的强烈存在,这是p - f混合所实现的特征。鉴于已知铁磁团簇的存在,这自然指出CMR的起源是自旋极化极化子在铁磁团簇边界的散射。这些结果不仅对研究eucd2x2家族的强相关性和拓扑结构具有启发意义,而且从更广泛的角度来看,还举例说明了多种合作相互作用如何在凝聚态系统中产生非凡的行为。
Colossal magnetoresistance from spin-polarized polarons in an Ising system
Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM 2 X 2 (M = Cd, In, Zn; X = P, As), distinct from the traditional avenues involving Kondo–Ruderman–Kittel–Kasuya–Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd 2 P 2 . While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ( TMR ) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this nonquasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the p - f mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd 2 X 2 family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.