揭示氢在高效银取代CZTSSe光电器件中的作用:光电特性调制和缺陷钝化

IF 26.6 1区 材料科学 Q1 Engineering
Xiaoyue Zhao, Jingru Li, Chenyang Hu, Yafang Qi, Zhengji Zhou, Dongxing Kou, Wenhui Zhou, Shengjie Yuan, Sixin Wu
{"title":"揭示氢在高效银取代CZTSSe光电器件中的作用:光电特性调制和缺陷钝化","authors":"Xiaoyue Zhao,&nbsp;Jingru Li,&nbsp;Chenyang Hu,&nbsp;Yafang Qi,&nbsp;Zhengji Zhou,&nbsp;Dongxing Kou,&nbsp;Wenhui Zhou,&nbsp;Shengjie Yuan,&nbsp;Sixin Wu","doi":"10.1007/s40820-024-01574-3","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of Sn<sub>Zn</sub>-related defects in Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) absorber results in large irreversible energy loss and extra irreversible electron–hole non-radiative recombination, thus hindering the efficiency enhancement of CZTSSe devices. Although the incorporation of Ag in CZTSSe can effectively suppress the Sn<sub>Zn</sub>-related defects and significantly improve the resulting cell performance, an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution. Herein, this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress Sn<sub>Zn</sub> defects for achieving efficient CZTSSe devices. In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution. Importantly, the C=O and O–H functional groups induced by hydrogen incorporation, serving as an electron donor, can interact with under-coordinated cations in CZTSSe material, effectively passivating the Sn<sub>Zn</sub>-related defects. Consequently, the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination, prolongs minority carrier lifetime, and thus yields a champion efficiency of 14.74%, showing its promising application in kesterite-based CZTSSe devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01574-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Revealing the Role of Hydrogen in Highly Efficient Ag-Substituted CZTSSe Photovoltaic Devices: Photoelectric Properties Modulation and Defect Passivation\",\"authors\":\"Xiaoyue Zhao,&nbsp;Jingru Li,&nbsp;Chenyang Hu,&nbsp;Yafang Qi,&nbsp;Zhengji Zhou,&nbsp;Dongxing Kou,&nbsp;Wenhui Zhou,&nbsp;Shengjie Yuan,&nbsp;Sixin Wu\",\"doi\":\"10.1007/s40820-024-01574-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of Sn<sub>Zn</sub>-related defects in Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) absorber results in large irreversible energy loss and extra irreversible electron–hole non-radiative recombination, thus hindering the efficiency enhancement of CZTSSe devices. Although the incorporation of Ag in CZTSSe can effectively suppress the Sn<sub>Zn</sub>-related defects and significantly improve the resulting cell performance, an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution. Herein, this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress Sn<sub>Zn</sub> defects for achieving efficient CZTSSe devices. In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution. Importantly, the C=O and O–H functional groups induced by hydrogen incorporation, serving as an electron donor, can interact with under-coordinated cations in CZTSSe material, effectively passivating the Sn<sub>Zn</sub>-related defects. Consequently, the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination, prolongs minority carrier lifetime, and thus yields a champion efficiency of 14.74%, showing its promising application in kesterite-based CZTSSe devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01574-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01574-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01574-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Cu2ZnSn(S,Se)4 (CZTSSe)吸收体中snzn相关缺陷的存在导致了较大的不可逆能量损失和额外的不可逆电子空穴非辐射复合,从而阻碍了CZTSSe器件效率的提高。虽然在CZTSSe中掺入Ag可以有效地抑制snzn相关缺陷,并显著提高电池性能,但由于Ag取代导致CZTSSe膜的导电性差和载流子密度低,迄今为止还没有达到优异的效率。在此,本研究巧妙地设计了Ag/H共掺杂策略,通过Ag取代程序和氢等离子体处理程序来抑制SnZn缺陷,从而实现高效的CZTSSe器件。深入研究结果表明,在银基CZTSSe吸收剂中掺入H有望改善银取代引起的导电性差和载流子密度低的问题。重要的是,氢掺入诱导的C=O和O - h官能团作为电子供体,可以与CZTSSe材料中的欠配位阳离子相互作用,有效地钝化snzn相关缺陷。因此,在CZTSSe中加入适量的Ag/H可以减轻载流子的非辐射重组,延长少数载流子寿命,从而获得14.74%的champion效率,显示了其在kesterte基CZTSSe器件中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing the Role of Hydrogen in Highly Efficient Ag-Substituted CZTSSe Photovoltaic Devices: Photoelectric Properties Modulation and Defect Passivation

The presence of SnZn-related defects in Cu2ZnSn(S,Se)4 (CZTSSe) absorber results in large irreversible energy loss and extra irreversible electron–hole non-radiative recombination, thus hindering the efficiency enhancement of CZTSSe devices. Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance, an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution. Herein, this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices. In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution. Importantly, the C=O and O–H functional groups induced by hydrogen incorporation, serving as an electron donor, can interact with under-coordinated cations in CZTSSe material, effectively passivating the SnZn-related defects. Consequently, the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination, prolongs minority carrier lifetime, and thus yields a champion efficiency of 14.74%, showing its promising application in kesterite-based CZTSSe devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信