菌底比对生物质厌氧消化产甲烷的影响

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES
Marvin T. Valentin, Daniel Ciolkosz, Andrzej Białowiec
{"title":"菌底比对生物质厌氧消化产甲烷的影响","authors":"Marvin T. Valentin,&nbsp;Daniel Ciolkosz,&nbsp;Andrzej Białowiec","doi":"10.1111/1758-2229.70009","DOIUrl":null,"url":null,"abstract":"<p>The influence of the inoculum-to-substrate ratio (ISR) on anaerobic digestion (AD) of biomass in terms of methane yield and microbial community, was explored in this paper. The level of ISR can affect the AD performance in several ways. At extremely low ISR, volatile fatty acids (VFAs) accumuate, while inhibition occur at higher level of ISR. An ISR ranging from 1.0–2.0 was found optimal resulting in higher methane yield, organic matter removal and VFA degradation. Furthermore, a high ISR (2.0–4.0) is favourable to methanogenesis, while a lower ISR (&lt;1.0) is prone to irreversible acidification. The range of ISR can shift the methanogenic pathway of AD to favour an acetoclastic or hydrogenotrophic response, indicated by the enriched group of microorganisms. The genus <i>Methanosaeta</i> (acetoclastic) and <i>Methanobacterium</i> (hydrogenotrophic) are the most enriched methanogens across all ISRs, while <i>Firmicutes</i>, <i>Bacteroidetes</i>, <i>Proteobacteria</i> and <i>Spirochaetae</i> are dominant in the bacterial community. Additionally, the interplay of substrate biodegradability and ISR potentially affects AD performance. Finally, novel equations are developed and proposed for characterizing the quantity of inoculum and substrate.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70009","citationCount":"0","resultStr":"{\"title\":\"Influence of inoculum-to-substrate ratio on biomethane production via anaerobic digestion of biomass\",\"authors\":\"Marvin T. Valentin,&nbsp;Daniel Ciolkosz,&nbsp;Andrzej Białowiec\",\"doi\":\"10.1111/1758-2229.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of the inoculum-to-substrate ratio (ISR) on anaerobic digestion (AD) of biomass in terms of methane yield and microbial community, was explored in this paper. The level of ISR can affect the AD performance in several ways. At extremely low ISR, volatile fatty acids (VFAs) accumuate, while inhibition occur at higher level of ISR. An ISR ranging from 1.0–2.0 was found optimal resulting in higher methane yield, organic matter removal and VFA degradation. Furthermore, a high ISR (2.0–4.0) is favourable to methanogenesis, while a lower ISR (&lt;1.0) is prone to irreversible acidification. The range of ISR can shift the methanogenic pathway of AD to favour an acetoclastic or hydrogenotrophic response, indicated by the enriched group of microorganisms. The genus <i>Methanosaeta</i> (acetoclastic) and <i>Methanobacterium</i> (hydrogenotrophic) are the most enriched methanogens across all ISRs, while <i>Firmicutes</i>, <i>Bacteroidetes</i>, <i>Proteobacteria</i> and <i>Spirochaetae</i> are dominant in the bacterial community. Additionally, the interplay of substrate biodegradability and ISR potentially affects AD performance. Finally, novel equations are developed and proposed for characterizing the quantity of inoculum and substrate.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从甲烷产量和微生物群落的角度探讨了菌底比(ISR)对生物质厌氧消化(AD)的影响。ISR的水平可以从几个方面影响AD的性能。在极低的ISR下,挥发性脂肪酸(VFAs)积累,而在较高的ISR水平下则发生抑制。在1.0-2.0的ISR范围内,可以获得更高的甲烷产量,有机物去除率和VFA降解。此外,高ISR(2.0-4.0)有利于甲烷生成,而低ISR (<1.0)容易发生不可逆酸化。ISR的范围可以改变AD的产甲烷途径,使其倾向于乙酰分解或氢营养反应,这是由富集的微生物群所表明的。甲烷菌属(Methanosaeta)和甲烷菌属(hydrogentrophic Methanobacterium)是所有ISRs中丰度最高的产甲烷菌,而厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)和螺旋体菌门(Spirochaetae)在细菌群落中占主导地位。此外,底物生物降解性和ISR的相互作用可能会影响AD性能。最后,提出了描述接种物和底物数量的新方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of inoculum-to-substrate ratio on biomethane production via anaerobic digestion of biomass

Influence of inoculum-to-substrate ratio on biomethane production via anaerobic digestion of biomass

Influence of inoculum-to-substrate ratio on biomethane production via anaerobic digestion of biomass

The influence of the inoculum-to-substrate ratio (ISR) on anaerobic digestion (AD) of biomass in terms of methane yield and microbial community, was explored in this paper. The level of ISR can affect the AD performance in several ways. At extremely low ISR, volatile fatty acids (VFAs) accumuate, while inhibition occur at higher level of ISR. An ISR ranging from 1.0–2.0 was found optimal resulting in higher methane yield, organic matter removal and VFA degradation. Furthermore, a high ISR (2.0–4.0) is favourable to methanogenesis, while a lower ISR (<1.0) is prone to irreversible acidification. The range of ISR can shift the methanogenic pathway of AD to favour an acetoclastic or hydrogenotrophic response, indicated by the enriched group of microorganisms. The genus Methanosaeta (acetoclastic) and Methanobacterium (hydrogenotrophic) are the most enriched methanogens across all ISRs, while Firmicutes, Bacteroidetes, Proteobacteria and Spirochaetae are dominant in the bacterial community. Additionally, the interplay of substrate biodegradability and ISR potentially affects AD performance. Finally, novel equations are developed and proposed for characterizing the quantity of inoculum and substrate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信