Zhihao Xie , Xinqiang Fu , Qin Zhang , Lulu Liu , Xinying Zhu , Yi Ren , Wei Chen
{"title":"增材制造金属晶格结构的弹道性能","authors":"Zhihao Xie , Xinqiang Fu , Qin Zhang , Lulu Liu , Xinying Zhu , Yi Ren , Wei Chen","doi":"10.1016/j.tws.2024.112763","DOIUrl":null,"url":null,"abstract":"<div><div>For the purpose of elucidating the destruction and energy absorption mechanisms of lattice structures during ballistic impacts, this study explored the behavior of two additively manufactured metal lattice structures (BCC and BCCZ) under quasi-static/dynamic compression and ballistic impact through experiments and numerical simulations. Both structures exhibited typical stress-strain behaviors during quasi-static compression, with stress plateauing after reaching yield strength and then sharply declining upon failure. The vertical struts in the BCCZ structure resulted in higher yield strength but lower normalized failure strain compared to the BCC structure, especially at higher strain rates. The ballistic limit of the BCC lattice sandwich target plate at 199 m/s and that of the BCCZ lattice sandwich target plate at 195 m/s. At an impact velocity of 207 m/s, the energy absorbed by the BCC lattice structure itself (498 J) was marginally lower than that absorbed by the BCCZ structure (505 J). The BCC structure, characterized by lower stiffness and yield strength but a larger failure strain, absorbed energy primarily through greater deformation during impact. In contrast, the BCCZ structure, with a smaller failure strain, depended on its higher stiffness and yield strength for energy absorption.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"208 ","pages":"Article 112763"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ballistic performance of additive manufacturing metal lattice structures\",\"authors\":\"Zhihao Xie , Xinqiang Fu , Qin Zhang , Lulu Liu , Xinying Zhu , Yi Ren , Wei Chen\",\"doi\":\"10.1016/j.tws.2024.112763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the purpose of elucidating the destruction and energy absorption mechanisms of lattice structures during ballistic impacts, this study explored the behavior of two additively manufactured metal lattice structures (BCC and BCCZ) under quasi-static/dynamic compression and ballistic impact through experiments and numerical simulations. Both structures exhibited typical stress-strain behaviors during quasi-static compression, with stress plateauing after reaching yield strength and then sharply declining upon failure. The vertical struts in the BCCZ structure resulted in higher yield strength but lower normalized failure strain compared to the BCC structure, especially at higher strain rates. The ballistic limit of the BCC lattice sandwich target plate at 199 m/s and that of the BCCZ lattice sandwich target plate at 195 m/s. At an impact velocity of 207 m/s, the energy absorbed by the BCC lattice structure itself (498 J) was marginally lower than that absorbed by the BCCZ structure (505 J). The BCC structure, characterized by lower stiffness and yield strength but a larger failure strain, absorbed energy primarily through greater deformation during impact. In contrast, the BCCZ structure, with a smaller failure strain, depended on its higher stiffness and yield strength for energy absorption.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"208 \",\"pages\":\"Article 112763\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124012035\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124012035","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Ballistic performance of additive manufacturing metal lattice structures
For the purpose of elucidating the destruction and energy absorption mechanisms of lattice structures during ballistic impacts, this study explored the behavior of two additively manufactured metal lattice structures (BCC and BCCZ) under quasi-static/dynamic compression and ballistic impact through experiments and numerical simulations. Both structures exhibited typical stress-strain behaviors during quasi-static compression, with stress plateauing after reaching yield strength and then sharply declining upon failure. The vertical struts in the BCCZ structure resulted in higher yield strength but lower normalized failure strain compared to the BCC structure, especially at higher strain rates. The ballistic limit of the BCC lattice sandwich target plate at 199 m/s and that of the BCCZ lattice sandwich target plate at 195 m/s. At an impact velocity of 207 m/s, the energy absorbed by the BCC lattice structure itself (498 J) was marginally lower than that absorbed by the BCCZ structure (505 J). The BCC structure, characterized by lower stiffness and yield strength but a larger failure strain, absorbed energy primarily through greater deformation during impact. In contrast, the BCCZ structure, with a smaller failure strain, depended on its higher stiffness and yield strength for energy absorption.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.