{"title":"各向异性可细化函数和平铺b样条","authors":"Vladimir Yu. Protasov , Tatyana Zaitseva","doi":"10.1016/j.acha.2024.101727","DOIUrl":null,"url":null,"abstract":"<div><div>The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was not before 2019 that the non-isotropic case was done by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"75 ","pages":"Article 101727"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic refinable functions and the tile B-splines\",\"authors\":\"Vladimir Yu. Protasov , Tatyana Zaitseva\",\"doi\":\"10.1016/j.acha.2024.101727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was not before 2019 that the non-isotropic case was done by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"75 \",\"pages\":\"Article 101727\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324001040\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324001040","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Anisotropic refinable functions and the tile B-splines
The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was not before 2019 that the non-isotropic case was done by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.