线源传导辐射问题的边界追踪精确解

Q1 Mathematics
Conway Li , Brendan J. Florio , Neville Fowkes , Miccal Matthews
{"title":"线源传导辐射问题的边界追踪精确解","authors":"Conway Li ,&nbsp;Brendan J. Florio ,&nbsp;Neville Fowkes ,&nbsp;Miccal Matthews","doi":"10.1016/j.padiff.2024.101009","DOIUrl":null,"url":null,"abstract":"<div><div>Boundary tracing is a technique whereby exact solutions to boundary value problems in known domains are used to generate alternate domains admitting the same solution. Here we use line-source solutions of Laplace’s equation to produce exact solutions to the conduction–radiation problem in novel domains, such as circular regions with protrusions and teardrop-shaped regions with short or long tails. The shapes and sizes obtained are practical and could be used for novel radiator design.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 101009"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solutions of line-source conduction–radiation problems via boundary tracing\",\"authors\":\"Conway Li ,&nbsp;Brendan J. Florio ,&nbsp;Neville Fowkes ,&nbsp;Miccal Matthews\",\"doi\":\"10.1016/j.padiff.2024.101009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Boundary tracing is a technique whereby exact solutions to boundary value problems in known domains are used to generate alternate domains admitting the same solution. Here we use line-source solutions of Laplace’s equation to produce exact solutions to the conduction–radiation problem in novel domains, such as circular regions with protrusions and teardrop-shaped regions with short or long tails. The shapes and sizes obtained are practical and could be used for novel radiator design.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 101009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

边界跟踪是一种利用已知域的边值问题的精确解来生成承认相同解的备选域的技术。在这里,我们使用拉普拉斯方程的线源解来产生新的领域中传导辐射问题的精确解,例如带突出的圆形区域和带短尾或长尾的泪滴形区域。所得到的形状和尺寸是实用的,可用于新型散热器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact solutions of line-source conduction–radiation problems via boundary tracing
Boundary tracing is a technique whereby exact solutions to boundary value problems in known domains are used to generate alternate domains admitting the same solution. Here we use line-source solutions of Laplace’s equation to produce exact solutions to the conduction–radiation problem in novel domains, such as circular regions with protrusions and teardrop-shaped regions with short or long tails. The shapes and sizes obtained are practical and could be used for novel radiator design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信