{"title":"调节压缩应变可实现高性能锡基钙钛矿太阳能电池","authors":"Jialun Jin, Zhihao Zhang, Shengli Zou, Fangfang Cao, Yuanfang Huang, Yiting Jiang, Zhiyu Gao, Yuliang Xu, Junyu Qu, Xiaoxue Wang, Cong Chen, Chuanxiao Xiao, Shengqiang Ren, Dewei Zhao","doi":"10.1002/aenm.202403718","DOIUrl":null,"url":null,"abstract":"<p>Tin (Sn)-based perovskites have emerged as promising alternatives to lead (Pb)-based perovskites in thin-film photovoltaics due to their comparable properties and reduced toxicity. Strains in perovskites can be tailored to modulate their optoelectronic properties, but mechanisms for the effects of strains on Sn-based perovskite films and devices are unrevealed and corresponding strain engineering is unexplored. Herein, a strain engineering strategy is developed through incorporating 4-fluorobenzylammonium halide salts (FBZAX, X = I, Br, Cl) into the perovskite precursor to regulate the strain effects in resultant Sn-based perovskite films. It is found that a moderate level of compressive strain achieved by FBZABr alleviates the dislocations within perovskites to enhance carrier transport and reduces the defect density to prolong carrier lifetime. These improvements enable a champion efficiency exceeding 14% of Sn-based perovskite solar cells with excellent operational stability.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 14","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Compressive Strain Enables High-Performance Tin-Based Perovskite Solar Cells\",\"authors\":\"Jialun Jin, Zhihao Zhang, Shengli Zou, Fangfang Cao, Yuanfang Huang, Yiting Jiang, Zhiyu Gao, Yuliang Xu, Junyu Qu, Xiaoxue Wang, Cong Chen, Chuanxiao Xiao, Shengqiang Ren, Dewei Zhao\",\"doi\":\"10.1002/aenm.202403718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tin (Sn)-based perovskites have emerged as promising alternatives to lead (Pb)-based perovskites in thin-film photovoltaics due to their comparable properties and reduced toxicity. Strains in perovskites can be tailored to modulate their optoelectronic properties, but mechanisms for the effects of strains on Sn-based perovskite films and devices are unrevealed and corresponding strain engineering is unexplored. Herein, a strain engineering strategy is developed through incorporating 4-fluorobenzylammonium halide salts (FBZAX, X = I, Br, Cl) into the perovskite precursor to regulate the strain effects in resultant Sn-based perovskite films. It is found that a moderate level of compressive strain achieved by FBZABr alleviates the dislocations within perovskites to enhance carrier transport and reduces the defect density to prolong carrier lifetime. These improvements enable a champion efficiency exceeding 14% of Sn-based perovskite solar cells with excellent operational stability.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"15 14\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403718\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403718","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
锡(Sn)基钙钛矿由于具有相似的性能和较低的毒性,已成为薄膜光伏电池中铅(Pb)基钙钛矿的有前途的替代品。钙钛矿中的应变可以调节其光电性能,但应变对锡基钙钛矿薄膜和器件的影响机制尚未揭示,相应的应变工程尚未探索。本文提出了一种应变工程策略,将4-氟乙酶卤化铵盐(FBZAX, X = I, Br, Cl)加入钙钛矿前驱体中,以调节所得锡基钙钛矿薄膜中的应变效应。结果表明,FBZABr达到中等水平的压缩应变,可以缓解钙钛矿内部的位错,增强载流子输运,降低缺陷密度,延长载流子寿命。这些改进使得sn基钙钛矿太阳能电池的效率超过14%,并且具有出色的运行稳定性。
Regulating Compressive Strain Enables High-Performance Tin-Based Perovskite Solar Cells
Tin (Sn)-based perovskites have emerged as promising alternatives to lead (Pb)-based perovskites in thin-film photovoltaics due to their comparable properties and reduced toxicity. Strains in perovskites can be tailored to modulate their optoelectronic properties, but mechanisms for the effects of strains on Sn-based perovskite films and devices are unrevealed and corresponding strain engineering is unexplored. Herein, a strain engineering strategy is developed through incorporating 4-fluorobenzylammonium halide salts (FBZAX, X = I, Br, Cl) into the perovskite precursor to regulate the strain effects in resultant Sn-based perovskite films. It is found that a moderate level of compressive strain achieved by FBZABr alleviates the dislocations within perovskites to enhance carrier transport and reduces the defect density to prolong carrier lifetime. These improvements enable a champion efficiency exceeding 14% of Sn-based perovskite solar cells with excellent operational stability.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.