多阈值二维功能电路的一步范德华集成

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziyang Zhang, Guanyu Liu, Saifei Gou, Weida Hong, Haitao Jiang, Zhongying Xue, Miao Zhang, Wenzhong Bao, Ziao Tian, Zengfeng Di
{"title":"多阈值二维功能电路的一步范德华集成","authors":"Ziyang Zhang,&nbsp;Guanyu Liu,&nbsp;Saifei Gou,&nbsp;Weida Hong,&nbsp;Haitao Jiang,&nbsp;Zhongying Xue,&nbsp;Miao Zhang,&nbsp;Wenzhong Bao,&nbsp;Ziao Tian,&nbsp;Zengfeng Di","doi":"10.1002/adfm.202418615","DOIUrl":null,"url":null,"abstract":"<p>Transition-metal dichalcogenides (TMDs), as atomically thin semiconductors, have shown immense promise for next-generation electronics due to their high mobility and potential for creating van der Waals heterostructures. However, precise control of the threshold voltage (<i>V</i><sub>th</sub>) in field-effect transistors (FETs) remains a significant challenge, impeding the development of 2D material circuits with tailored electronic functions. Herein, a graphene-assisted one-step van der Waals integration technique is presented for fabricating multi-threshold 2D functional circuits. Graphene's unique property of having a surface without dangling bonds is utilized as an intermediary layer, allowing for the transfer of electrodes with various work functions and high-<i>κ</i> dielectric layers onto 2D channel materials in a single step. This technique has successfully produced Al-gated MoS<sub>2</sub> FETs with a <i>V</i><sub>th</sub> of −0.2 V and Au-gated MoS<sub>2</sub> FETs with a <i>V</i><sub>th</sub> of 1.9 V. This precision enables the development of functional devices such as rail-to-rail inverters with large noise margins. Furthermore, more complex multi-threshold 2D circuits are achieved, including basic logic gates (NOT, NAND, NOR), six-transistor static random-access memory (6T-SRAM), and ring oscillators (RO). This work showcases a scalable and effective strategy for threshold voltage engineering in 2D material-based circuits, paving the way for sophisticated electronic and optoelectronic applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 15","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits\",\"authors\":\"Ziyang Zhang,&nbsp;Guanyu Liu,&nbsp;Saifei Gou,&nbsp;Weida Hong,&nbsp;Haitao Jiang,&nbsp;Zhongying Xue,&nbsp;Miao Zhang,&nbsp;Wenzhong Bao,&nbsp;Ziao Tian,&nbsp;Zengfeng Di\",\"doi\":\"10.1002/adfm.202418615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transition-metal dichalcogenides (TMDs), as atomically thin semiconductors, have shown immense promise for next-generation electronics due to their high mobility and potential for creating van der Waals heterostructures. However, precise control of the threshold voltage (<i>V</i><sub>th</sub>) in field-effect transistors (FETs) remains a significant challenge, impeding the development of 2D material circuits with tailored electronic functions. Herein, a graphene-assisted one-step van der Waals integration technique is presented for fabricating multi-threshold 2D functional circuits. Graphene's unique property of having a surface without dangling bonds is utilized as an intermediary layer, allowing for the transfer of electrodes with various work functions and high-<i>κ</i> dielectric layers onto 2D channel materials in a single step. This technique has successfully produced Al-gated MoS<sub>2</sub> FETs with a <i>V</i><sub>th</sub> of −0.2 V and Au-gated MoS<sub>2</sub> FETs with a <i>V</i><sub>th</sub> of 1.9 V. This precision enables the development of functional devices such as rail-to-rail inverters with large noise margins. Furthermore, more complex multi-threshold 2D circuits are achieved, including basic logic gates (NOT, NAND, NOR), six-transistor static random-access memory (6T-SRAM), and ring oscillators (RO). This work showcases a scalable and effective strategy for threshold voltage engineering in 2D material-based circuits, paving the way for sophisticated electronic and optoelectronic applications.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 15\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418615\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418615","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDs)作为原子级薄半导体,由于其高迁移率和创造范德华异质结构的潜力,在下一代电子领域显示出巨大的前景。然而,场效应晶体管(fet)中阈值电压(Vth)的精确控制仍然是一个重大挑战,阻碍了具有定制电子功能的2D材料电路的发展。本文提出了一种石墨烯辅助一步范德华积分技术,用于制造多阈值二维功能电路。石墨烯表面没有悬垂键的独特特性被用作中间层,允许将具有各种功函数和高κ介电层的电极一次转移到二维通道材料上。该技术已成功制备出Vth为- 0.2 V的Al门控MoS2 fet和Vth为1.9 V的Au门控MoS2 fet。这种精度使得开发具有大噪声裕度的轨对轨逆变器等功能器件成为可能。此外,还实现了更复杂的多阈值2D电路,包括基本逻辑门(NOT, NAND, NOR),六晶体管静态随机存取存储器(6T - SRAM)和环形振荡器(RO)。这项工作展示了二维材料基电路中阈值电压工程的可扩展和有效策略,为复杂的电子和光电子应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits

One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits

One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits

One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits

One-Step Van der Waals Integration of Multi-Threshold 2D Functional Circuits

Transition-metal dichalcogenides (TMDs), as atomically thin semiconductors, have shown immense promise for next-generation electronics due to their high mobility and potential for creating van der Waals heterostructures. However, precise control of the threshold voltage (Vth) in field-effect transistors (FETs) remains a significant challenge, impeding the development of 2D material circuits with tailored electronic functions. Herein, a graphene-assisted one-step van der Waals integration technique is presented for fabricating multi-threshold 2D functional circuits. Graphene's unique property of having a surface without dangling bonds is utilized as an intermediary layer, allowing for the transfer of electrodes with various work functions and high-κ dielectric layers onto 2D channel materials in a single step. This technique has successfully produced Al-gated MoS2 FETs with a Vth of −0.2 V and Au-gated MoS2 FETs with a Vth of 1.9 V. This precision enables the development of functional devices such as rail-to-rail inverters with large noise margins. Furthermore, more complex multi-threshold 2D circuits are achieved, including basic logic gates (NOT, NAND, NOR), six-transistor static random-access memory (6T-SRAM), and ring oscillators (RO). This work showcases a scalable and effective strategy for threshold voltage engineering in 2D material-based circuits, paving the way for sophisticated electronic and optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信