同时在Cs2CoCl4单晶中实现负光导响应和挥发性电阻开关,以实现人工光电突触

IF 20.6 Q1 OPTICS
Huifang Jiang, Huifang Ji, Zhuangzhuang Ma, Dongwen Yang, Jingli Ma, Mengyao Zhang, Xu Li, Meng Wang, Ying Li, Xu Chen, Di Wu, Xinjian Li, Chongxin Shan, Zhifeng Shi
{"title":"同时在Cs2CoCl4单晶中实现负光导响应和挥发性电阻开关,以实现人工光电突触","authors":"Huifang Jiang, Huifang Ji, Zhuangzhuang Ma, Dongwen Yang, Jingli Ma, Mengyao Zhang, Xu Li, Meng Wang, Ying Li, Xu Chen, Di Wu, Xinjian Li, Chongxin Shan, Zhifeng Shi","doi":"10.1038/s41377-024-01642-8","DOIUrl":null,"url":null,"abstract":"<p>The development of negative photoconductivity (NPC)-related devices is of great significance for numerous applications, such as optoelectronic detection, neuromorphic computing, and optoelectronic synapses. Here, an unusual but interesting NPC phenomenon in the novel cesium cobalt chlorine (Cs<sub>2</sub>CoCl<sub>4</sub>) single crystal-based optoelectronic devices is reported, which simultaneously possess volatile resistive switching (RS) memory behavior. Joint experiment−theory characterizations reveal that the NPC behavior is derived from the intrinsic vacancy defects of Cs<sub>2</sub>CoCl<sub>4</sub>, which could trap photogenerated charge carriers and produce an internal electric field opposite to the applied electric field. Such NPC effect enables an abnormal photodetection performance with a decrease in electrical conductivity to illumination. Also, a large specific detectivity of 2.7 × 10<sup>12</sup> Jones and broadband NPC detection wavelength from 265 to 780 nm were achieved. In addition to the NPC response, the resulting devices demonstrate a volatile RS performance with a record-low electric field of 5 × 10<sup>4 </sup>V m<sup>−1</sup>. By integrating the characteristics of electric-pulse enhancement from RS and light-pulse depression from NPC, an artificial optoelectronic synapse was successfully demonstrated, and based on the simulation of artificial neural network algorithm, the recognition application of handwritten digital images was realized. These pioneer findings are anticipated to contribute significantly to the practical advancement of metal halides in the fields of in-memory technologies and artificial intelligence.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"18 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous achieving negative photoconductivity response and volatile resistive switching in Cs2CoCl4 single crystals towards artificial optoelectronic synapse\",\"authors\":\"Huifang Jiang, Huifang Ji, Zhuangzhuang Ma, Dongwen Yang, Jingli Ma, Mengyao Zhang, Xu Li, Meng Wang, Ying Li, Xu Chen, Di Wu, Xinjian Li, Chongxin Shan, Zhifeng Shi\",\"doi\":\"10.1038/s41377-024-01642-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of negative photoconductivity (NPC)-related devices is of great significance for numerous applications, such as optoelectronic detection, neuromorphic computing, and optoelectronic synapses. Here, an unusual but interesting NPC phenomenon in the novel cesium cobalt chlorine (Cs<sub>2</sub>CoCl<sub>4</sub>) single crystal-based optoelectronic devices is reported, which simultaneously possess volatile resistive switching (RS) memory behavior. Joint experiment−theory characterizations reveal that the NPC behavior is derived from the intrinsic vacancy defects of Cs<sub>2</sub>CoCl<sub>4</sub>, which could trap photogenerated charge carriers and produce an internal electric field opposite to the applied electric field. Such NPC effect enables an abnormal photodetection performance with a decrease in electrical conductivity to illumination. Also, a large specific detectivity of 2.7 × 10<sup>12</sup> Jones and broadband NPC detection wavelength from 265 to 780 nm were achieved. In addition to the NPC response, the resulting devices demonstrate a volatile RS performance with a record-low electric field of 5 × 10<sup>4 </sup>V m<sup>−1</sup>. By integrating the characteristics of electric-pulse enhancement from RS and light-pulse depression from NPC, an artificial optoelectronic synapse was successfully demonstrated, and based on the simulation of artificial neural network algorithm, the recognition application of handwritten digital images was realized. These pioneer findings are anticipated to contribute significantly to the practical advancement of metal halides in the fields of in-memory technologies and artificial intelligence.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01642-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01642-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

负光导相关器件的发展对于光电检测、神经形态计算、光电突触等众多应用具有重要意义。本文报道了新型铯钴氯(Cs2CoCl4)单晶光电子器件中一个不寻常但有趣的NPC现象,该器件同时具有挥发性电阻开关(RS)记忆行为。实验-理论联合表征表明,NPC行为来源于Cs2CoCl4的本征空位缺陷,该缺陷可以捕获光生载流子并产生与外加电场相反的内部电场。这种NPC效应使光探测性能异常,对照明的电导率降低。此外,还实现了2.7 × 1012 Jones的大比探测率和265 ~ 780 nm的宽带NPC探测波长。除了NPC响应外,所得到的器件在5 × 104 V m−1的创纪录低电场下表现出挥发性RS性能。结合RS的电脉冲增强和NPC的光脉冲抑制的特点,成功地演示了一种人工光电突触,并基于人工神经网络算法的仿真,实现了手写数字图像的识别应用。这些开创性的发现预计将对金属卤化物在内存技术和人工智能领域的实际进步做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous achieving negative photoconductivity response and volatile resistive switching in Cs2CoCl4 single crystals towards artificial optoelectronic synapse

Simultaneous achieving negative photoconductivity response and volatile resistive switching in Cs2CoCl4 single crystals towards artificial optoelectronic synapse

The development of negative photoconductivity (NPC)-related devices is of great significance for numerous applications, such as optoelectronic detection, neuromorphic computing, and optoelectronic synapses. Here, an unusual but interesting NPC phenomenon in the novel cesium cobalt chlorine (Cs2CoCl4) single crystal-based optoelectronic devices is reported, which simultaneously possess volatile resistive switching (RS) memory behavior. Joint experiment−theory characterizations reveal that the NPC behavior is derived from the intrinsic vacancy defects of Cs2CoCl4, which could trap photogenerated charge carriers and produce an internal electric field opposite to the applied electric field. Such NPC effect enables an abnormal photodetection performance with a decrease in electrical conductivity to illumination. Also, a large specific detectivity of 2.7 × 1012 Jones and broadband NPC detection wavelength from 265 to 780 nm were achieved. In addition to the NPC response, the resulting devices demonstrate a volatile RS performance with a record-low electric field of 5 × 104 V m−1. By integrating the characteristics of electric-pulse enhancement from RS and light-pulse depression from NPC, an artificial optoelectronic synapse was successfully demonstrated, and based on the simulation of artificial neural network algorithm, the recognition application of handwritten digital images was realized. These pioneer findings are anticipated to contribute significantly to the practical advancement of metal halides in the fields of in-memory technologies and artificial intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信