Michiel Vanneste, Hanne Hoskens, Seppe Goovaerts, Harold Matthews, Jay Devine, Jose D. Aponte, Joanne Cole, Mark Shriver, Mary L. Marazita, Seth M. Weinberg, Susan Walsh, Stephen Richmond, Ophir D. Klein, Richard A. Spritz, Hilde Peeters, Benedikt Hallgrímsson, Peter Claes
{"title":"综合征信息表型鉴定了一般人群中软骨发育不全样面部变异的多基因背景","authors":"Michiel Vanneste, Hanne Hoskens, Seppe Goovaerts, Harold Matthews, Jay Devine, Jose D. Aponte, Joanne Cole, Mark Shriver, Mary L. Marazita, Seth M. Weinberg, Susan Walsh, Stephen Richmond, Ophir D. Klein, Richard A. Spritz, Hilde Peeters, Benedikt Hallgrímsson, Peter Claes","doi":"10.1038/s41467-024-54839-1","DOIUrl":null,"url":null,"abstract":"<p>Human craniofacial shape is highly variable yet highly heritable with numerous genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the general population. We compare three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores reveals a polygenic basis for facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples, both human and mouse, shows craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing insights into the genetic intersection of complex traits and Mendelian disorders.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"84 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syndrome-informed phenotyping identifies a polygenic background for achondroplasia-like facial variation in the general population\",\"authors\":\"Michiel Vanneste, Hanne Hoskens, Seppe Goovaerts, Harold Matthews, Jay Devine, Jose D. Aponte, Joanne Cole, Mark Shriver, Mary L. Marazita, Seth M. Weinberg, Susan Walsh, Stephen Richmond, Ophir D. Klein, Richard A. Spritz, Hilde Peeters, Benedikt Hallgrímsson, Peter Claes\",\"doi\":\"10.1038/s41467-024-54839-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human craniofacial shape is highly variable yet highly heritable with numerous genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the general population. We compare three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores reveals a polygenic basis for facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples, both human and mouse, shows craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing insights into the genetic intersection of complex traits and Mendelian disorders.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54839-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54839-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Syndrome-informed phenotyping identifies a polygenic background for achondroplasia-like facial variation in the general population
Human craniofacial shape is highly variable yet highly heritable with numerous genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the general population. We compare three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores reveals a polygenic basis for facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples, both human and mouse, shows craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing insights into the genetic intersection of complex traits and Mendelian disorders.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.