利用表面活性剂和自然光,提高光电太阳能发电和亮甲酰蓝的储存能力

Pooran Koli
{"title":"利用表面活性剂和自然光,提高光电太阳能发电和亮甲酰蓝的储存能力","authors":"Pooran Koli","doi":"10.1002/bte2.20240018","DOIUrl":null,"url":null,"abstract":"<p>Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240018","citationCount":"0","resultStr":"{\"title\":\"Increasing photogalvanic solar power generation and storage capacity of brilliant cresyl blue by employing surfactant and natural sunlight\",\"authors\":\"Pooran Koli\",\"doi\":\"10.1002/bte2.20240018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光电太阳能电池是一种具有固有能量存储能力的太阳能收集装置。在低照度下,果糖/亮甲酰蓝染料(还原剂/光敏剂偶联)的输出电流为590 μA,功率为183.3 μW,效率为1.95%。为了探索这些电池应用的可行性,报告的电输出需要进一步提高,并证明在自然阳光下的可加工性。为此,在自然光照下,采用表面活性剂和极小Pt电极,研究了改性果糖还原剂-氢氧化钠碱-亮甲酰蓝染料光敏剂光电体系。在改进后的研究中,电流(2300 μA)、功率(661 μW)和效率(8.26%)显著增强。研究表明,光原电池可以在高照明强度下工作,其基本原理与在人工和低强度照明下工作的电池相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Increasing photogalvanic solar power generation and storage capacity of brilliant cresyl blue by employing surfactant and natural sunlight

Increasing photogalvanic solar power generation and storage capacity of brilliant cresyl blue by employing surfactant and natural sunlight

Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信