{"title":"利用表面活性剂和自然光,提高光电太阳能发电和亮甲酰蓝的储存能力","authors":"Pooran Koli","doi":"10.1002/bte2.20240018","DOIUrl":null,"url":null,"abstract":"<p>Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240018","citationCount":"0","resultStr":"{\"title\":\"Increasing photogalvanic solar power generation and storage capacity of brilliant cresyl blue by employing surfactant and natural sunlight\",\"authors\":\"Pooran Koli\",\"doi\":\"10.1002/bte2.20240018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing photogalvanic solar power generation and storage capacity of brilliant cresyl blue by employing surfactant and natural sunlight
Photogalvanic solar cells are solar energy harvesting devices having inherent power storage capacity. Electrical output as 590 μA current, 183.3 μW power, and 1.95% efficiency is reported for the fructose/brilliant cresyl blue dye (a reductant/photosensitizer couple) at low illumination intensity. For exploring the feasibility of these cells for application, the reported electrical output needs further enhancement with the demonstration of workability in natural sunlight. With this aim, the modified fructose reductant-NaOH alkali-brilliant cresyl blue dye photosensitizer photogalvanic system has been studied using a surfactant with a very small Pt electrode in natural sunlight. Abruptly enhanced current (2300 μA), power (661 μW), and efficiency (8.26%) have been observed in the modified study. The study has shown that photogalvanic cells can work at high illumination intensity adhering to similar basic principles, which are apt for cells working at artificial and low-intensity illumination.