Wangqing Wu, Changyuan Jia, Bingyan Jiang, Yang Zou
{"title":"超声振动下聚合物-聚合物界面热生成建模:摩擦-粘弹性耦合方法","authors":"Wangqing Wu, Changyuan Jia, Bingyan Jiang, Yang Zou","doi":"10.1007/s10973-024-13803-3","DOIUrl":null,"url":null,"abstract":"<div><p>To quantify the interfacial friction and volumetric viscous heating contribution of polymers during ultrasonic plasticization is of great significance for optimizing plasticization process parameters. This paper presents a coupled numerical analysis model considering multiple heat sources in a simplified ultrasonic plasticizing system. The contribution of contact position angles and ultrasonic process parameters to interfacial friction and volumetric viscous heating of polymers was considered, and the accuracy of the model was verified by infrared experiment and simulation. The following conclusions were summarized: the interface temperature increases first and then decreases during the experiment, and the heat generation mainly occurs in the first second of plasticization. The effects of process parameters on polymer heating, dynamic parameters, and energy were studied by simulation. It was found that the contact position angle and ultrasonic process parameters controlled the heat generation process by influencing the friction force and slip velocity between pellets. Under standard processing conditions, when the contact position angle ranges from 0°to 90°, both the heat production rate and total heat initially increase before subsequently decreasing, reaching a maximum at approximately 40°. At this optimal angle, the friction force is around 27.5 N, the slip rate is about 2250 mm s<sup>−1</sup>, and the heat production rate measures 11 K ms<sup>−1</sup>. The results indicate that when the amplitude is set at 40 μm, the frequency at 30 kHz, and the contact angle at 40°, the ultrasonic plasticizing effect is optimized. This configuration ensures a higher rate of heat generation while minimizing material degradation. The interfacial friction heat is significantly higher than the volumetric viscous heat under each condition. The interfacial friction heat is usually 3–5 times higher than the volumetric viscous heat. This study provides a basis for the high-quality molding of polymer ultrasonic plasticization.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13865 - 13878"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling heat generation in polymer–polymer interfaces under ultrasonic vibration: a coupled friction and viscoelastic approach\",\"authors\":\"Wangqing Wu, Changyuan Jia, Bingyan Jiang, Yang Zou\",\"doi\":\"10.1007/s10973-024-13803-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To quantify the interfacial friction and volumetric viscous heating contribution of polymers during ultrasonic plasticization is of great significance for optimizing plasticization process parameters. This paper presents a coupled numerical analysis model considering multiple heat sources in a simplified ultrasonic plasticizing system. The contribution of contact position angles and ultrasonic process parameters to interfacial friction and volumetric viscous heating of polymers was considered, and the accuracy of the model was verified by infrared experiment and simulation. The following conclusions were summarized: the interface temperature increases first and then decreases during the experiment, and the heat generation mainly occurs in the first second of plasticization. The effects of process parameters on polymer heating, dynamic parameters, and energy were studied by simulation. It was found that the contact position angle and ultrasonic process parameters controlled the heat generation process by influencing the friction force and slip velocity between pellets. Under standard processing conditions, when the contact position angle ranges from 0°to 90°, both the heat production rate and total heat initially increase before subsequently decreasing, reaching a maximum at approximately 40°. At this optimal angle, the friction force is around 27.5 N, the slip rate is about 2250 mm s<sup>−1</sup>, and the heat production rate measures 11 K ms<sup>−1</sup>. The results indicate that when the amplitude is set at 40 μm, the frequency at 30 kHz, and the contact angle at 40°, the ultrasonic plasticizing effect is optimized. This configuration ensures a higher rate of heat generation while minimizing material degradation. The interfacial friction heat is significantly higher than the volumetric viscous heat under each condition. The interfacial friction heat is usually 3–5 times higher than the volumetric viscous heat. This study provides a basis for the high-quality molding of polymer ultrasonic plasticization.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 23\",\"pages\":\"13865 - 13878\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13803-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13803-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
量化聚合物在超声塑化过程中的界面摩擦和体积粘性热贡献对优化塑化工艺参数具有重要意义。提出了一种考虑多热源的简化超声塑化系统耦合数值分析模型。考虑了接触位置角和超声工艺参数对聚合物界面摩擦和体积粘性加热的影响,并通过红外实验和仿真验证了模型的准确性。得出以下结论:实验过程中界面温度先升高后降低,热的产生主要发生在塑化的第一秒。通过仿真研究了工艺参数对聚合物加热、动力学参数和能量的影响。研究发现,接触位置角和超声工艺参数通过影响球团间摩擦力和滑移速度来控制产热过程。在标准加工条件下,当接触位置角在0°~ 90°范围内时,产热率和总热量均先增大后减小,在40°左右达到最大值。在此最佳角度下,摩擦力约为27.5 N,滑移率约为2250 mm s−1,产热率为11 K ms−1。结果表明:当振幅为40 μm,频率为30 kHz,接触角为40°时,超声塑化效果最佳;这种结构确保了更高的产热率,同时最大限度地减少了材料的降解。在各工况下,界面摩擦热均显著高于体积粘性热。界面摩擦热通常是体积粘性热的3-5倍。该研究为聚合物超声塑化的高质量成型提供了依据。
Modeling heat generation in polymer–polymer interfaces under ultrasonic vibration: a coupled friction and viscoelastic approach
To quantify the interfacial friction and volumetric viscous heating contribution of polymers during ultrasonic plasticization is of great significance for optimizing plasticization process parameters. This paper presents a coupled numerical analysis model considering multiple heat sources in a simplified ultrasonic plasticizing system. The contribution of contact position angles and ultrasonic process parameters to interfacial friction and volumetric viscous heating of polymers was considered, and the accuracy of the model was verified by infrared experiment and simulation. The following conclusions were summarized: the interface temperature increases first and then decreases during the experiment, and the heat generation mainly occurs in the first second of plasticization. The effects of process parameters on polymer heating, dynamic parameters, and energy were studied by simulation. It was found that the contact position angle and ultrasonic process parameters controlled the heat generation process by influencing the friction force and slip velocity between pellets. Under standard processing conditions, when the contact position angle ranges from 0°to 90°, both the heat production rate and total heat initially increase before subsequently decreasing, reaching a maximum at approximately 40°. At this optimal angle, the friction force is around 27.5 N, the slip rate is about 2250 mm s−1, and the heat production rate measures 11 K ms−1. The results indicate that when the amplitude is set at 40 μm, the frequency at 30 kHz, and the contact angle at 40°, the ultrasonic plasticizing effect is optimized. This configuration ensures a higher rate of heat generation while minimizing material degradation. The interfacial friction heat is significantly higher than the volumetric viscous heat under each condition. The interfacial friction heat is usually 3–5 times higher than the volumetric viscous heat. This study provides a basis for the high-quality molding of polymer ultrasonic plasticization.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.