In2Se3@Ag3PO4异质结极化电场增强光催化高效脱除有机废水中的U(VI

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Rongshuo Guo, Linghua Jin, Hongqing Wang, Ruibin Wang, Xinyi Zhang, Ye Zhang
{"title":"In2Se3@Ag3PO4异质结极化电场增强光催化高效脱除有机废水中的U(VI","authors":"Rongshuo Guo,&nbsp;Linghua Jin,&nbsp;Hongqing Wang,&nbsp;Ruibin Wang,&nbsp;Xinyi Zhang,&nbsp;Ye Zhang","doi":"10.1016/j.jwpe.2024.106690","DOIUrl":null,"url":null,"abstract":"<div><div>Effective catalytic methods and catalysts for the simultaneous removal of coexisting organic pollutants and heavy metal ions are crucial for sustainable and environmentally friendly water purification. Herein, flower-like S-scheme In<sub>2</sub>Se<sub>3</sub>@Ag<sub>3</sub>PO<sub>4</sub> heterojunctions were synthesized by a two-step hydrothermal method for simultaneous removal of uranium (VI) (U(VI)) and organic pollutants using piezo-photocatalysis. Characterization and theoretical calculations confirmed the formation of the heterojunction, highlighting the significance of In<img>O and Se<img>P bonds in the S-scheme for enhancing photocatalytic reactions by improving charge carrier separation and migration. Additionally, the piezoelectric polarization electric field can also improve photocatalytic performance. The optimized In<sub>2</sub>Se<sub>3</sub>@Ag<sub>3</sub>PO<sub>4</sub>–3 catalyst demonstrated superior piezo-photocatalytic performance in synergistically removing U(VI) and degrading organics, such as tetracycline (TC), bisphenol A (BPA), carbamazepine (CBZ), levofloxacin (LVX), and norfloxacin (NOR). Particularly, in the presence of TC, the catalyst achieved 98.7 % U(VI) removal, and 94.1 % TC degradation within 30 min. This study introduces a promising strategy and a novel heterojunction catalyst with dual functional properties for the simultaneous treatment of wastewater containing organic pollutants and U(VI).</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106690"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficient U(VI) removal from organic wastewater through polarization electric field enhanced photocatalysis with In2Se3@Ag3PO4 heterojunction\",\"authors\":\"Rongshuo Guo,&nbsp;Linghua Jin,&nbsp;Hongqing Wang,&nbsp;Ruibin Wang,&nbsp;Xinyi Zhang,&nbsp;Ye Zhang\",\"doi\":\"10.1016/j.jwpe.2024.106690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective catalytic methods and catalysts for the simultaneous removal of coexisting organic pollutants and heavy metal ions are crucial for sustainable and environmentally friendly water purification. Herein, flower-like S-scheme In<sub>2</sub>Se<sub>3</sub>@Ag<sub>3</sub>PO<sub>4</sub> heterojunctions were synthesized by a two-step hydrothermal method for simultaneous removal of uranium (VI) (U(VI)) and organic pollutants using piezo-photocatalysis. Characterization and theoretical calculations confirmed the formation of the heterojunction, highlighting the significance of In<img>O and Se<img>P bonds in the S-scheme for enhancing photocatalytic reactions by improving charge carrier separation and migration. Additionally, the piezoelectric polarization electric field can also improve photocatalytic performance. The optimized In<sub>2</sub>Se<sub>3</sub>@Ag<sub>3</sub>PO<sub>4</sub>–3 catalyst demonstrated superior piezo-photocatalytic performance in synergistically removing U(VI) and degrading organics, such as tetracycline (TC), bisphenol A (BPA), carbamazepine (CBZ), levofloxacin (LVX), and norfloxacin (NOR). Particularly, in the presence of TC, the catalyst achieved 98.7 % U(VI) removal, and 94.1 % TC degradation within 30 min. This study introduces a promising strategy and a novel heterojunction catalyst with dual functional properties for the simultaneous treatment of wastewater containing organic pollutants and U(VI).</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"69 \",\"pages\":\"Article 106690\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714424019226\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424019226","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

同时去除共存的有机污染物和重金属离子的有效催化方法和催化剂对于可持续和环境友好的水净化至关重要。本文采用两步水热法合成了花状S-scheme In2Se3@Ag3PO4异质结,并利用压电光催化同时去除铀(VI) (U(VI))和有机污染物。表征和理论计算证实了异质结的形成,突出了s方案中InO和SeP键通过改善载流子分离和迁移来增强光催化反应的重要性。此外,压电极化电场也可以提高光催化性能。优化后的In2Se3@Ag3PO4 -3催化剂在协同去除U(VI)和降解四环素(TC)、双酚A (BPA)、卡马西平(CBZ)、左氧氟沙星(LVX)和诺氟沙星(NOR)等有机物方面表现出优异的压光催化性能。特别是,在TC存在的情况下,该催化剂在30分钟内达到98.7%的U(VI)去除率,94.1%的TC去除率。本研究介绍了一种具有双重功能特性的新型异质结催化剂,用于同时处理含有有机污染物和U(VI)的废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-efficient U(VI) removal from organic wastewater through polarization electric field enhanced photocatalysis with In2Se3@Ag3PO4 heterojunction

High-efficient U(VI) removal from organic wastewater through polarization electric field enhanced photocatalysis with In2Se3@Ag3PO4 heterojunction
Effective catalytic methods and catalysts for the simultaneous removal of coexisting organic pollutants and heavy metal ions are crucial for sustainable and environmentally friendly water purification. Herein, flower-like S-scheme In2Se3@Ag3PO4 heterojunctions were synthesized by a two-step hydrothermal method for simultaneous removal of uranium (VI) (U(VI)) and organic pollutants using piezo-photocatalysis. Characterization and theoretical calculations confirmed the formation of the heterojunction, highlighting the significance of InO and SeP bonds in the S-scheme for enhancing photocatalytic reactions by improving charge carrier separation and migration. Additionally, the piezoelectric polarization electric field can also improve photocatalytic performance. The optimized In2Se3@Ag3PO4–3 catalyst demonstrated superior piezo-photocatalytic performance in synergistically removing U(VI) and degrading organics, such as tetracycline (TC), bisphenol A (BPA), carbamazepine (CBZ), levofloxacin (LVX), and norfloxacin (NOR). Particularly, in the presence of TC, the catalyst achieved 98.7 % U(VI) removal, and 94.1 % TC degradation within 30 min. This study introduces a promising strategy and a novel heterojunction catalyst with dual functional properties for the simultaneous treatment of wastewater containing organic pollutants and U(VI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信