CF/PEEK薄壁结构热成型翘曲缺陷形成机理及其对力学性能的影响分析

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Yue Li , Aisha Yang , Yuting Liu , Yu Gao , Jianfeng Zhou , Yan Dong , Shu Zhu
{"title":"CF/PEEK薄壁结构热成型翘曲缺陷形成机理及其对力学性能的影响分析","authors":"Yue Li ,&nbsp;Aisha Yang ,&nbsp;Yuting Liu ,&nbsp;Yu Gao ,&nbsp;Jianfeng Zhou ,&nbsp;Yan Dong ,&nbsp;Shu Zhu","doi":"10.1016/j.tws.2024.112740","DOIUrl":null,"url":null,"abstract":"<div><div>The hot molding of carbon fiber-reinforced polyether ether ketone composites (CF/PEEK) thin-wall structures employs high cooling rates, which cause uneven material shrinkage across different parts and pronounced warping defects. This study fabricated CF/PEEK thin-wall laminates with a thickness of 1.2 mm through die-pressing technology and analyzed the effects of various cooling processes on plate warping. In addition, the study elucidated the formation mechanism of warping defects in CF/PEEK thin-wall structures and plotted a cooling rate curve to determine a strategy for effectively mitigating such defects. Notably, CF/PEEK hot molding warping involves an asynchronous contraction of molecular chains of crystalline polymers, leading to thermal residual stress. This study also investigated the effects of warpage on bending properties and stability. When warpage ranged from 10 to 15 mm, the maximum bending strength deviation along the plane was approximately 150 MPa, indicating that excessive warping substantially reduces bending strength. Moreover, laminates with minor warpage differences exhibited consistent performance stability. Overall, this study provides valuable insights for enhancing the forming quality of CF/PEEK, thereby promoting their application in advanced equipment.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"207 ","pages":"Article 112740"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of warping defect formation mechanisms in hot molding of CF/PEEK thin-wall structures and their influence on mechanical properties\",\"authors\":\"Yue Li ,&nbsp;Aisha Yang ,&nbsp;Yuting Liu ,&nbsp;Yu Gao ,&nbsp;Jianfeng Zhou ,&nbsp;Yan Dong ,&nbsp;Shu Zhu\",\"doi\":\"10.1016/j.tws.2024.112740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The hot molding of carbon fiber-reinforced polyether ether ketone composites (CF/PEEK) thin-wall structures employs high cooling rates, which cause uneven material shrinkage across different parts and pronounced warping defects. This study fabricated CF/PEEK thin-wall laminates with a thickness of 1.2 mm through die-pressing technology and analyzed the effects of various cooling processes on plate warping. In addition, the study elucidated the formation mechanism of warping defects in CF/PEEK thin-wall structures and plotted a cooling rate curve to determine a strategy for effectively mitigating such defects. Notably, CF/PEEK hot molding warping involves an asynchronous contraction of molecular chains of crystalline polymers, leading to thermal residual stress. This study also investigated the effects of warpage on bending properties and stability. When warpage ranged from 10 to 15 mm, the maximum bending strength deviation along the plane was approximately 150 MPa, indicating that excessive warping substantially reduces bending strength. Moreover, laminates with minor warpage differences exhibited consistent performance stability. Overall, this study provides valuable insights for enhancing the forming quality of CF/PEEK, thereby promoting their application in advanced equipment.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"207 \",\"pages\":\"Article 112740\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124011807\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011807","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强聚醚醚酮复合材料(CF/PEEK)薄壁结构的热成型采用高冷却速率,导致材料在不同部位收缩不均匀,并出现明显的翘曲缺陷。采用模压工艺制备了厚度为1.2 mm的CF/PEEK薄壁层压板,并分析了不同冷却工艺对板材翘曲的影响。此外,本研究阐明了CF/PEEK薄壁结构翘曲缺陷的形成机理,并绘制了冷却速率曲线,以确定有效缓解此类缺陷的策略。值得注意的是,CF/PEEK热成型翘曲涉及结晶聚合物分子链的异步收缩,导致热残余应力。本研究还探讨了翘曲对弯曲性能和稳定性的影响。当翘曲量为10 ~ 15 mm时,弯曲强度沿平面的最大偏差约为150 MPa,表明翘曲量过大会大大降低弯曲强度。此外,具有较小翘曲差异的层压板表现出一致的性能稳定性。总的来说,本研究为提高CF/PEEK的成形质量,从而促进其在先进设备中的应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of warping defect formation mechanisms in hot molding of CF/PEEK thin-wall structures and their influence on mechanical properties
The hot molding of carbon fiber-reinforced polyether ether ketone composites (CF/PEEK) thin-wall structures employs high cooling rates, which cause uneven material shrinkage across different parts and pronounced warping defects. This study fabricated CF/PEEK thin-wall laminates with a thickness of 1.2 mm through die-pressing technology and analyzed the effects of various cooling processes on plate warping. In addition, the study elucidated the formation mechanism of warping defects in CF/PEEK thin-wall structures and plotted a cooling rate curve to determine a strategy for effectively mitigating such defects. Notably, CF/PEEK hot molding warping involves an asynchronous contraction of molecular chains of crystalline polymers, leading to thermal residual stress. This study also investigated the effects of warpage on bending properties and stability. When warpage ranged from 10 to 15 mm, the maximum bending strength deviation along the plane was approximately 150 MPa, indicating that excessive warping substantially reduces bending strength. Moreover, laminates with minor warpage differences exhibited consistent performance stability. Overall, this study provides valuable insights for enhancing the forming quality of CF/PEEK, thereby promoting their application in advanced equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信